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Abstract
This paper presents a robust, adaptive nonlinear model predictive control (NMPC) technique that leverages past
experiences to achieve tractability on computationally constrained systems. We propose a robust extension of the
Experience-driven Predictive Control (EPC) algorithm via a Gaussian belief propagation strategy that computes an
uncertainty set bounding the evolution of the system state in the presence of time-varying state uncertainty. This
uncertainty set is used to tighten the constraints in the predictive control formulation via a chance constrained approach,
thereby providing a probabilistic guarantee of constraint satisfaction. The parameterized form of the controllers
produced by EPC coupled with online uncertainty estimates ensures this robust constraint satisfaction property persists
even as the system switches controllers and experiences variations in the uncertainty model. We validate the online
performance and robust constraint satisfaction of the proposed Robust EPC algorithm through a series of trials with
a simulated ground robot and three experimental platforms: 1) a small quadrotor aerial robot executing aggressive
maneuvers in wind with degraded state estimates, 2) a skid-steer ground robot equipped with a laser-based localization
system, and 3) a hexarotor aerial robot equipped with a vision-based localization system.
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1 Introduction

Autonomous robotic systems operating in uncertain, real-
world environments must be able to track trajectories safely
and reliably while obeying system limitations (e.g., actuator
constraints) and operational constraints (e.g., speed limits for
traversing a region of the environment or to satisfy sensor
limitations). However, these systems have inherently noisy
sensing and perception systems that produce state estimates
with variable uncertainty (Brunner and Peynot 2010) and
can lead to control actions that compromise the safety and
reliability of the system (Richards and How 2005; Bouffard
et al. 2012). Safe and reliable operation is particularly
challenging for small, agile systems, such as micro air
vehicles (MAVs) that are limited in their computation
and sensing capabilities by size, weight, and power
restrictions. Even larger platforms with computationally
expensive sensing and localization systems may have limited
resources for control (Brockers et al. 2014). Therefore, in
this work we aim to develop a computationally efficient
predictive control methodology that leverages uncertainty
information from the state estimator to ensure constraints
on the system state and control inputs are satisfied, even
in the presence of time-varying state uncertainty (illustrated
in Fig. 1). We specifically focus on the problem of
robust constraint satisfaction in predictive control, as the
predictive formulation permits anticipating and mitigating
future uncertainty while retaining an optimal control
framework (Mayne 2014).

There are two general classes of approaches for mitigating
the effects of uncertainty in predictive control. The first class
consists of adaptive formulations that seek to estimate and
mitigate the uncertainty in the dynamics model (Fukushima
et al. 2007; Aswani et al. 2013; Ho et al. 2014; Tanaskovic
et al. 2014). These approaches leverage online estimates of
the mean perturbation to the system dynamics, e.g. from
a Kalman filter (Bouffard et al. 2012) or nonparametric
estimator (Ostafew et al. 2014), that improves the accuracy
with which the predictive model can anticipate the system’s
evolution and interaction with the constraints. As a result,
online adaptation can yield improved trajectory tracking
accuracy and constraint satisfaction, even in the presence
of severe, nonlinear perturbations (Desaraju and Michael
2017). However, in practice, these techniques may still lead
to constraint violations due to the difference in timescales
between the disturbance estimator and high-frequency noise
in the state estimate (Desaraju 2017).

In contrast, the second class of techniques consists
of robust formulations that refine the constraints to
explicitly account for high-frequency uncertainty. Robust
MPC techniques provide constraint satisfaction guarantees in
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Figure 1. Overview of the proposed approach that combines an online learned controller database with estimates of the dynamics
model and state uncertainty. As uncertainty changes, the tightened constraints (red) on the MAV automatically adjust to ensure
robust satisfaction of the requested constraints (blue), even as the MAV switches between controllers. In panel (a), the existing
controller in the experience database is determined to be optimal and applied. Panel (b) shows the addition of a new controller to
the database to accommodate higher sensor uncertainty. In panel (c), the state uncertainty parameterizes all controllers in the
database as they are reused.

the presence of bounded, uncertain parameters (Kothare et al.
1996; Mayne and Langson 2001; Löfberg 2003; Langson
et al. 2004; Richards 2005). For linear dynamics, the effects
of bounded uncertainty can be represented by disturbance-
invariant sets (Kolmanovsky and Gilbert 1998) that can be
used to tighten the set of feasible states and inputs (e.g., via
the Pontryagin difference operation) (Mayne et al. 2005).
In the nonlinear case, this can be generalized to min-max
formulations to optimize with respect to the maximal state
deviations (Adetola and Guay 2011). These techniques yield
more conservative controllers than the adaptive approaches,
but as a result, are able to account for any variations within
the bounded uncertainty set without requiring a disturbance
estimator that can track rapid variations.

A subset of these Robust MPC techniques employ
local feedback control laws to restrict the anticipated
growth of uncertainty. This yields constraint tightening
and Tube MPC approaches that enable more aggressive
performance (Kuwata et al. 2007; Richards 2005; Mayne
et al. 2005). While many formulations assume the
uncertainty set is known a priori (e.g., as a disturbance
invariant set or via the min-max calculation), some
approaches permit online modification of robustness
bounds driven by online estimates of the uncertainty
bounds (Richards and How 2005). An extension of this
idea replaces the deterministic uncertainty set with a
probabilistic representation, e.g., as a multivariate Gaussian
distribution (Yan and Bitmead 2005). This representation
enables the use of a Kalman filter to predict the evolution
of state uncertainty instead of the recursive Pontryagin
difference operations required for deterministic sets (Mayne
2014), thus mirroring the belief propagation techniques
applied in belief-space planning (Platt et al. 2010). Some of
these belief-space approaches employ a chance constrained
formulation to transform the probabilistic formulation into a

deterministic one based on a tunable parameter that controls
allowable risk (Toit and Burdick 2010; Bry and Roy 2011).

Many adaptive MPC formulations also include a
robust component that is coupled to estimator uncer-
tainty (Fukushima et al. 2007; Adetola and Guay 2011;
Farrokhsiar et al. 2013). The resulting robust-adaptive for-
mulations allow the adaptive component to estimate and
compensate for low frequency components of the uncer-
tainty, while variability about the current estimate is handled
by the robust constraints (Ostafew et al. 2016).

However, these robust-adaptive techniques may not
be tractable on computationally constrained platforms.
Therefore, in addition to constraint satisfaction under
uncertainty, we require the ability to compute predictive
control commands at sufficiently high rates to ensure
stability of these resource constrained and often highly
agile systems. Fast MPC solution strategies can be divided
into four categories: leveraging fast online optimization
techniques (Houska et al. 2011; Neunert et al. 2016),
optimizing approximate formulations (Hofer et al. 2016),
explicit enumeration of equivalent controllers (Alexis et al.
2016; Domahidi et al. 2011), and semi-explicit approaches
(Pannocchia et al. 2007; Zeilinger et al. 2014; Desaraju and
Michael 2016, 2017). In this work, we consider this last
class of techniques due to the reduced reliance on online
optimization in a critical control loop and their scalability to
available computational resources (Pannocchia et al. 2007).
Within the class of semi-explicit approaches, the Experience-
driven Predictive Control (EPC) algorithm (Desaraju and
Michael 2017) extends this efficient formulation to mitigate
the effects of low-frequency disturbances to the system
dynamics.

Therefore, in this paper, we propose a constrained, predic-
tive control strategy that leverages EPC for computational
efficiency and adaptation to low-frequency components of
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the uncertainty. We extend the underlying control problem to
a chance-constrained Tube MPC formulation to capture the
effects of time-varying state uncertainty (e.g., due to sensors
with environment-dependent performance) in the robustness
bounds. The resulting Robust EPC algorithm encapsulates
the two core contributions of this work:

1) Computationally efficient solutions to MPC via a
semi-explicit solution strategy for nonlinear systems
with uncertain state estimates and dynamics models.

2) Probabilistic constraint satisfaction in the presence
of time-varying state uncertainty modeled by a
multivariate Gaussian distribution, e.g., provided by a
Kalman filter based state estimator.

Section 2 details the Robust EPC algorithm, including the
chance-constrained Tube MPC formulation, modifications
to (non-robust) EPC, and model adaptation strategies. In
Sect. 3, we present a set of simulation and experimental
studies that demonstrate the following key results:

• Stable control performance
• Real-time computation of control commands
• Experience reuse to reduce online computation
• Constraint satisfaction in the presence of time-varying

sensor uncertainty
• Improved trajectory tracking performance while

satisfying constraints
• Robust-adaptive constraint satisfaction in a challeng-

ing environment

This manuscript refines an earlier conference presentation
of the Robust EPC algorithm (Desaraju et al. 2017)
including a more detailed discussion of the model adaptation
techniques in Sect. 2.4. We also present new simulation
results with a ground robot (Sect. 3.1), and several new
experimental studies with three different platforms: a skid-
steer ground robot equipped with a laser-based localization
system (Sect. 3.3), a hexarotor aerial robot equipped with a
vision-based localization system (Sect. 3.4), and additional
results with a small quadrotor aerial robot executing
aggressive maneuvers in a strong, spatially varying wind
field (Sect. 3.2.4).

2 Approach
In this section, we present an extension of the Experience-
driven Predictive Control (EPC) algorithm (Desaraju and
Michael 2017) to achieve high-rate predictive control with
robust constraint satisfaction. EPC constructs online a two-
part experience database consisting of previously used
locally optimal controllers and observed perturbations to
the system’s dynamics model (illustrated by the blue and
yellow boxes in Fig. 1). The controllers are parameterized
by the dynamics model, and thus they automatically adapt
to changes in the model. We therefore propose the Robust
EPC algorithm by similarly parameterizing the controllers in
the database by an online updated estimate of the uncertainty
in the system state. This estimate is derived from the
state estimator covariance and enables the use of a belief
propagation approach to construct an uncertainty tube for the
evolution of the state over the prediction horizon.

Notation: For consistency throughout the presentation,
we reuse letters with different formatting to denote
related variables (e.g., x is a concatenated vector of xi).
The formatting indicates different variable types and is
summarized below:

Variable Type Examples
Scalar: x, r, u,N
Vector: x, r,u, c,gx

Concatenated Vector: x, r,u, c, gx
Matrix: A,B,R,Gx,M
Concatenated Matrix: A,B,R,Gx,M
Set: Xk,Uk
Function: J(·), f(·), κ(·)

2.1 Adaptive Stochastic Dynamics Model
We consider the general nonlinear dynamics and observation
models

xk+1 = f(xk,uk) + wk

zk = h(xk) + vk
(1)

where xk ∈ Rn is the system state, uk ∈ Rm is the control
input, and wk ∼ N (0,Wk) and vk ∼ N (0,Vk) denote
the process and measurement uncertainty, respectively. The
corresponding first order approximations about a nominal
state x∗ and nominal control u∗ are

xk+1 ≈ Ak(xk − x∗) + Bk(uk − u∗) + c̃ + wk

zk ≈ Ck(xk − x∗) + vk
(2)

where c̃ is the sum of the constant term in the Taylor series
approximation, f(x∗,u∗), and the predicted model error, ρ̂.
Updating ρ̂ via an online model learning strategy captures
both the linearization error and the effects of time-varying,
unmodeled dynamics, thus enabling adaptation to external
perturbations (detailed in Sect. 2.4).

To model the evolution of this uncertain system, we
leverage the existence of a closed-form belief propagation
law for Gaussian distributions (Sudderth et al. 2010) and
extend (1) to a standard EKF belief state update law that
yields an estimate of the state, xk ∼ N (µk,Σk),

µk+1 = f(µk,uk) + PkC
T
kL
−1
k (zk+1 − h(µk))

Σk+1 = Pk −PkC
T
kL
−1
k CkPk

where Pk = AkΣkA
T
k + Wk and Lk = CkPkC

T
k + Vk.

Following Platt et al. (2010), we take zk+1 = h(µk) as the
maximum likelihood observation to obtain a simplified belief
state update law

µk+1 = f(µk,uk)

Σk+1 = Pk −PkC
T
kL
−1
k CkPk

(3)

2.2 Chance-constrained Tube MPC
To incorporate this uncertainty propagation model into
a robust control framework, we propose a Tube MPC
formulation where the control applied to the system, uSk , is
the combination of the MPC output, uk, and an ancillary
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stabilizing controller with gain matrix Sk,

uSk = uk + Sk(xk − µk) (4)

This gain, Sk, is designed to stabilize the nominal system
via an unconstrained MPC formulation (Mayne et al. 2011)
given in Sect. 2.3.1. The introduction of the ancillary
controller restricts deviations from the predicted state
mean (Mayne 2014) and enables the MPC formulation
to account for the reduction in uncertainty due to local
feedback. This results in a slight change in the belief state
update law,

Pk = (Ak −BkSk)Σk(Ak −BkSk)T + Wk

The Tube MPC formulation also enforces state and input
constraints, xk ∈ Xk,uSk ∈ Uk. In this work, we assume the
admissible state sets, Xk, and input sets, Uk, are polytopic,
or can be approximated by polytopes. This yields a set of
half-plane constraints,

Gx(xk+1 − x∗) ≤ gx

Gu(uSk − u∗) ≤ gu

(5)

However, due to the stochastic dynamics model, we instead
employ a chance constrained formulation by requiring (5) to
hold with probability 1− α,

P (Gx(xk+1 − x∗) ≤ gx) ≥ 1− α
P
(
Gu(uSk − u∗) ≤ gu

)
≥ 1− α

(6)

Given that the belief state corresponds to a multivariate
Gaussian, N (µ,Σ), its probability mass level sets are
ellipsoids defined by a χ2 value. The ellipsoid containing
1− α of the probability mass is given by (x− µ)TΣ−1(x−
µ) = χ2

n(α). Therefore, a given chance constraint threshold,
1− α, yields an ellipsoid defining the state uncertainty
bounds.

Ensuring robust constraint satisfaction requires tighten-
ing (5) by these bounds (Mayne 2014), as illustrated in Fig. 2.
Consequently, to retain the linear form of the constraints,
we follow Domes and Neumaier (2011) to approximate the
ellipsoid by its axis-aligned bounding box with side lengths
given by

δxk+1 =
√
χ2
n(α)diag(Σk+1) (7)

where diag(·) returns the diagonal elements of the argument
as a vector.

While the MPC output, uk, does not introduce any control
input uncertainty, the ancillary controller is a function of the
uncertain future state. This yields a similar bound on the
control command,

δuk =
√
χ2
n(α)diag(SkΣkST

k) (8)

Given these bounding box dimensions, we convert the
probabilistic state and input constraints (6) to tightened
deterministic constraints, xk ∈ X̃k,uk ∈ Ũk,

Gx(µk+1 − x∗) ≤ gx −Gxδ
x
k+1 = g̃x

Gu(uk − u∗) ≤ gu −Guδ
u
k = g̃u

(9)

Uncertainty Tube

Time

Nominal 
Constraint 
Bounds

(a)

Tightened 
Constraint 
Bounds

Time

(b)

Figure 2. Two-dimensional illustration of constraint tightening:
(a) nominal state constraints (blue line) with the predicted
Gaussian uncertainty tube (Σi) define (b) chance-constraint
bounds (δi) that yield tightened constraints (red).

Although the bounding box is generally a conservative
approximation of the ellipsoid, we observe that for any axis-
aligned box constraint, tightening by the bounding box is
equivalent to the exact approach of tightening by the axis-
aligned suprema over the ellipsoid (Conte et al. 2013).

2.3 Robust EPC formulation
Although this chance-constrained Tube MPC formulation
permits an optimization-based solution, in this work,
we propose a novel extension to the Experience-driven
Predictive Control (EPC) algorithm (Desaraju and Michael
2017) to enable Robust MPC on computationally constrained
systems. The proposed Robust EPC algorithm leverages
this tube-based formulation to enforce robust constraint
satisfaction while retaining the computational efficiency and
model adaptation properties of EPC.

The underlying NMPC problem can be formulated as
a nonlinear program (NLP) that computes the control
sequence, u0, . . . ,uN−1, given the current state, x0, and N
reference states, r1, . . . , rN , (e.g., from a desired trajectory).
We also enforce the dynamics model (1) and constraints
given by

g(xk+1,uk) ≤ 0

The resulting NLP is given by

argmin
u0,...,uN−1

N−1∑
k=0

J(xk+1, rk+1,uk)

s.t. ẋ = f(x,u)

g(xk+1,uk) ≤ 0 ∀k = 0, . . . , N − 1

(10)
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where the cost function, J(·), is selected to penalize tracking
error and extraneous control effort, and the differential
equation constraint is enforced via numerical integration.

As in EPC, we can leverage (2) to reformulate (10) as a
quadratic program (QP) where the nonlinear dynamics and
constraints are re-linearized in every control iteration about
a nominal state, x∗ and input, u∗. The model adaptation
term, c̃, captures the linearization error and other unmodeled
dynamics. The resulting QP is given by

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQ(x̄k+1 − r̄k+1)

+
1

2
(ūk − ūc)TR(ūk − ūc)

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxx̄k+1 ≤ g̃x, Guūk ≤ g̃u

∀ k = 0, . . . , N − 1

(11)

where x̄k = µk − x∗, r̄k = rk − x∗, and ūk = uk − u∗.
If it is possible to derive a control input, ūc, from
the model adaptation term (e.g., if c̃ is an acceleration
disturbance, ūc would be the corresponding force) we
subtract it in the cost function to avoid penalizing model error
compensation (Desaraju and Michael 2017).

Given that we can forward predict the mean and
covariance evolution via (3), we can simplify notation
by defining x =

[
x̄T

1, . . . , x̄
T
N

]T
, r =

[
r̄T

1, . . . , r̄
T
N

]T
, u =[

ūT
0, . . . , ū

T
N−1

]T
, uc =

[
ūT
c, . . . , ū

T
c

]T
,

B =


B 0 . . . 0

AB B . . . 0
...

...
. . .

AN−1B AN−2B . . . B

 , c =


c̃

(A + I) c̃
...∑N−1

i=0 Aic̃

 ,
Q = diag(Q, . . . ,Q), R = diag(R, . . . ,R), Gx =
diag(Gx, . . . ,Gx), and Gu = diag(Gu, . . . ,Gu), where
diag(·) here diagonally concatenates matrices. Similarly, let
gx =

[
g̃T
x, . . . , g̃

T
x

]T
and gu =

[
g̃T
u, . . . , g̃

T
u

]T
to capture the

tightened constraints (9).
Finally, we defineµ0 to be a parameter of the optimization

constrained by the current state (see Sect. 2.3.2) rather than
directly using the current state as in EPC. Therefore, the
nominal state, x∗ = µ0, x̄0 = 0, and (11) simplifies to

argmin
u

1

2
(x− r)TQ(x− r) +

1

2
(u− uc)TR(u− uc)

s.t. x = Bu+ c, Gxx ≤ gx, Guu ≤ gu

Incorporating the dynamics into the cost and constraints
yields an equivalent QP that facilitates the state space
partitioning and local controller computation steps of EPC,

argmin
u

1

2
uTHu+ hTu

s.t. Γu ≤ γ
(12)

where H = BTQB + R, h = BTQ(c− r)−Ruc,

Γ =

[
GxB
Gu

]
, and γ =

[
gx − Gxc
gu

]

As in EPC, the partitioning of the state-space for Robust
EPC is determined by the Karush-Kuhn-Tucker (KKT)
conditions for optimality,

Hu+ h+ Γ Tλ = 0

Λ(Γu− γ) = 0
(13)

where λ is the vector of Lagrange multipliers and Λ =
diag(λ). Therefore, given a set of active constraints (i.e.,
with λ > 0), we can solve for the optimal control sequence
u and corresponding λ by solving a linear system derived
from (13), [

H Γ T
a

Γ a 0

] [
u
λa

]
=

[
−h
γa

]
where the subscript a denotes rows corresponding to active
constraints. For any linearly independent set of active
constraints (Bemporad et al. 2002), the resulting u is affine
in the predicted state mean error, r,

u = E5r −

E5c− E4Ruc + E3


g+
x − Gxc
−g−x + Gxc

g+
u

−g−u


a


(14)

where E1 = Γ aH−1, E2 = −(E1Γ
T
a)−1, E3 = ET

1E2,
E4 = H−1 + E3E1, and E5 = E4BTQ. Moreover, the
coefficients in (14) are all functions of A,B, c̃, δx, and δu.
Therefore, the final control law κ(x0, r1, . . . , rN ) is given
by a parameterized feedback gain matrix K, a parameterized
feedforward vector kff, and the ancillary control gain matrix,
S,

κ(x0, r1, . . . , rN ) = K(A,B, c̃, δx, δu)r

+ kff(A,B, c̃, δ
x, δu)

+
[
S0(x0 − µ0)T, . . . ,SN−1(xN−1 − µN−1)T]T (15)

The KKT matrices that determine whether a previously
computed controller is locally optimal are similarly
parameterized, and the active Lagrange multipliers, λa, are
given by

λa = −E6r+

E6c− ET
3Ruc + E2


g+
x − Gxc
−g−x + Gxc

g+
u

−g−u


a

(16)

where E6 = ET
3B

TQ. Therefore, given a set of active
constraints, the corresponding controller and KKT matrices
can be reconstructed online using (14), (16), and the current
A,B, c̃, δx and δu. Therefore, each controller automatically
evolves with both the estimated system dynamics and state
uncertainty. This also enables the construction of a controller
database that recovers the functionality of (11) by switching
between controllers according to the KKT conditions, thus
providing the foundation for the Robust EPC algorithm
detailed in Sect. 2.5.

2.3.1 Ancillary Controller: In addition to the introduction
of a chance-constrained formulation, the extension of EPC
to Robust EPC requires two key components. The first is an
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ancillary controller that aims to drive the current state, xk,
(now treated as deterministic) to the state mean sequence,
µk, produced by (12). The corresponding unconstrained
MPC formulation,

argmin
uk

N−1∑
k=0

1

2
(xk+1 − µk+1)TQ(xk+1 − µk+1)

+
1

2
uT
kRuk

yields an equivalent set of feedback control gains computed
analogously to (15) without constraints,

diag(S0, . . . ,SN−1) = (BTQB + R)−1BTQ (17)

2.3.2 Initial State Selection: The second component is the
initial state mean parameter,µ0. Due to the uncertainty in the
state, µ0 is not necessarily set to the initial state, x0. Instead,
the tube-based formulation permits selecting µ0 such that

x0 ∈ µ0 ⊕ Box(δx0) (18)

where Box(δx0) is the bounding box with dimensions given
by δx0 (Mayne and Langson 2001) and ⊕ denotes the
Minkowski sum. We therefore propose a piecewise definition
of µ0,

µ0 =

{
x0, x0 ∈ X̃0

projX̃ (x0), x0 ∈ X0\X̃0

(19)

where the projX̃ (·) operator projects the state onto the
tightened constraint set, X̃ . If x0 ∈ X̃0, the initial state
satisfies (18) and can be assigned to µ0. Otherwise,
we assume only the noisy state is outside X̃0 and use
the projection operation to find the closest point in X̃0.
Due to the chance-constrained formulation, infrequent
constraint violations are possible. Therefore, if x0 /∈ X0, an
intermediate controller is applied as part of the Robust EPC
algorithm detailed in Sect. 2.5 to recover from the constraint
violation.

2.4 Online Model Adaptation
In addition to robust constraint satisfaction, the parameter-
ized controllers (15) generated via Robust EPC retain the
adaptation properties of EPC, thus providing a means to
mitigate both high and low frequency sources of uncertainty.
While EPC employs Locally Weighted Projection Regres-
sion (Vijayakumar et al. 2005) to construct and update a
database of local dynamics models, we consider three online
model adaptation strategies to assess their effects on robust
constraint satisfaction.

2.4.1 LWPR Model Learner: We apply Locally Weighted
Projection Regression (LWPR) to learn corrections to
a nominal dynamics model via a Gaussian-weighted
combination of local linear functions that are updated
incrementally via partial least squares (Vijayakumar et al.
2005). Let ζk−1 = (xk−1,uk−1) be the input to the model
learner and ρk be the output such that xk = x̃k + ρk, where
x̃k is the state predicted by the deterministic, linearized
dynamics model and xk is the observed state. LWPR learns
an element-wise prediction model, each of which consists
of Ni local models, (αj ,βj), with weights wj defined by a

Gaussian kernel (mean mj , covariance Dj),

ρ̂i(ζ) =
1

W

Ni∑
j=1

wj(ζ)(αj + βT
j (ζ −mj))

wj(ζ) = exp
(
−1

2
(ζ −mj)

TD−1
j (ζ −mj)

)
W =

Ni∑
j=1

wj(ζ)

Therefore, given the previous state-control pair, ζk−1, LWPR
returns a prediction, ρ̂k, of the error between the predicted
and actual current state.

2.4.2 ISSGPR Model Learner: We can also learn the
same input-output model via Incremental Sparse Spectrum
Gaussian Process Regression (ISSGPR) (Gijsberts and
Metta 2013). ISSGPR projects input data onto a set of
trigonometric basis functions with random frequencies.
Regularized linear regression in this feature space yields the
predictive mean. While standard Gaussian process regression
has cubic run time in the number of data points, ISSGPR
achieves constant time by using an explicit sinusoidal feature
space to avoid the expensive computation of the Gramian
matrix. As ISSGPR also regresses to a scalar output, we fit
the dynamics model element-wise.

To generate predictions, ISSGPR approximates the Asym-
metric Squared Exponential kernel function (commonly used
in Gaussian process regression),

k(ζi, ζj) = σ2e−
1
2 (ζi−ζj)TM(ζi−ζj)

by the inner product, φTφ, where

φ(ζ) =

1√
D

[
cos(ωT

1ζ), sin(ωT
1ζ), . . . , cos(ωT

Dζ), sin(ωT
Dζ)

]T
The ωd terms denote D random frequencies drawn from the
multivariate Gaussian, N (0,M). With this approximation,
ISSGPR follows standard Gaussian process regression
to generate predictions (Rasmussen and Williams 2006).
Additionally, this formulation enables incremental updates
on the prediction model, with the predicted mean given by

ρ̂k = ρ̂k−1 + φTρk

2.4.3 Luenberger Disturbance Observer: Finally, we
also consider a purely reactive adaptation strategy based
on L1 adaptive control (Wang et al. 2013). This approach
employs a nonlinear Luenberger observer driven by the
difference between the state predicted via (1) and the state
reported by the state estimator.

Additionally, for all three approaches, we follow the
insight from L1 adaptive control and apply a low-pass filter
to the output of the learner/observer before it is provided to
the controller. The bandwidth of this filter is tuned to the
system’s response time to avoid destabilizing the system with
rapid model perturbations.
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Algorithm 1 Robust Experience-driven Predictive Control

1: M← ∅ orMprior
2: while control is enabled do
3: x0 ← current system state estimate mean
4: r1, . . . , rN ← current reference sequence
5: A,B, c̃← current dynamics model via adaptation
6: Compute S via (17) and δx, δu via (7),(8)
7: Select µ0 via (19)
8: for each element mi ∈M do
9: Compute u,λ via (14),(16)

10: if x, r satisfy parameterized KKT criteria then
11: importancei ← current time, sortM
12: solution found← true
13: Apply control law (15) from mi

14: end if
15: end for
16: if solution found is false then
17: Apply interm. control via (12) with slack

variables
18: Update QP formulation with (A,B, c̃, δx, δu)
19: Generate new controller via QP (12) (in parallel)
20: if |M| = maximum table size then
21: Remove element with min. importance
22: end if
23: Add mnew = (K,kff,importance) toM
24: end if
25: end while

2.5 Algorithm Overview

The Robust EPC algorithm leverages this formulation
to achieve high-rate adaptive control while providing
robust constraint satisfaction, as illustrated in Fig. 1
and detailed in Alg. 1. We incrementally construct an
experience database, M, as a mapping from experiences,
(x, r,u,A,B, c̃, δx, δu), to controllers, (K,kff), that can
be queried in future control iterations to recover the
functionality of (11). In every control iteration, Robust EPC
obtains the current state estimate, x0, reference sequence,
r1, . . . , rN , and dynamics model (A,B, c̃) updated via
adaptation. It also computes the robustness bounds, δx

and δu, via the current state estimate covariance and
the ancillary controller gains, and sets the initial state,
µ0, according to (19). The algorithm then searches M
and assesses the optimality of each element via the
parameterized KKT conditions (line 8). If any element
meets the optimality criteria, the search terminates and the
corresponding parameterized controller is augmented with
the ancillary controller (15) and applied (as in Fig. 1a). This
implies that the current situation is only required to match
the active set for the experience entry, not the entire tuple,
(x, r,u,A,B, c̃, δx, δu). Thus we can simply store sets of
active constraints in the database.

As in Fig. 1b, if no element satisfies the KKT conditions
(line 16), a new element is computed via (12) and added to
M to extend the stored experiences to include the current
scenario. To avoid blocking the control loop during this
computation, a short-horizon intermediate MPC with slack
on state constraints (line 17) is applied in parallel. The
short horizon is selected to achieve the required control

rate at the expense of degraded performance, while the
slack constraints ensure feasibility even in the presence
of constraint violations. Robust EPC also bounds search
time by limiting the size of M. Each element is given an
importance score based on how recently it was used, and
M is sorted in order of decreasing importance. When a
new element is added, the element ofM with the minimum
importance may be removed to maintain the size limit
(line 21). As this algorithm runs, M will be populated
with the appropriate controllers for the current situation,
thereby reducing the dependence on the intermediate
controller. Due to the parameterized form of the controller
gains (14) and KKT matrices (16), the elements of M
also automatically adapt to changes in the dynamics model
and robustness bounds, thus maintaining robust constraint
satisfaction via controller switching. Finally, we note that
switching controllers within the database preserves stability
as it is analogous to explicit MPC techniques (Grancharova
and Johansen 2012), while transitions to and from the
intermediate controller will preserve stability if they are
sufficiently infrequent (Hespanha and Morse 1999; Desaraju
2017).

3 Results
To assess the performance of the proposed Robust EPC
algorithm, we consider a set of simulation studies with a
skid-steer ground robot and a series of hardware experiments
with three robot platforms: 1) a quadrotor micro air vehicle,
2) a skid steer ground robot with laser-based localization, and
3) a hexarotor aerial vehicle with visual odometry. Through
these four cases, we aim to demonstrate the following
results: R1: stable control performance, R2: real-time
computation of control commands, R3: experience reuse,
R4: constraint satisfaction in the presence of time-varying
sensor uncertainty (i.e., robust constraint satisfaction), R5:
improved trajectory tracking performance while satisfying
constraints, and R6: robust constraint satisfaction during
aggressive motion in challenging environments.

3.1 Simulated Ground Robot
We first consider a simulated ground robot with skid-
steer dynamics equipped with a planar laser-scanner (270◦

field of view, 1081 beams, 30 m maximum range). The
simulator implements a high-fidelity model of a skid-steer
robot, including accelerations and actuator dynamics, and
provides state feedback via a Simultaneous Localization and
Mapping (SLAM) architecture that employs an unscented
Kalman filter (UKF) to fuse estimates from ICP-based laser
odometry and histogram filter-based localization (Nelson
2015). The UKF also provides covariance estimates that
capture the uncertainty in the state estimate due to imperfect
ICP solutions, thereby enabling use of the proposed Robust
EPC algorithm.

To formulate Robust EPC, we employ a dynamics model
that captures the translational dynamics in the x− y plane,
heading, θ, and the angular velocities of the left and right
wheels, wl and wr, respectively. As the robot is modeled
after a skid-steer platform with low-level velocity control,
the control inputs available to Robust EPC are the body-
frame velocity and angular velocity commands, vdes and
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ωdes, respectively. The resulting nonlinear dynamics model
is given by

f(x,u) =



ẋ = v cos(θ)

ẍ = v̇ cos(θ)− vθ̇ sin(θ)
ẏ = v sin(θ)

ÿ = v̇ sin(θ) + vθ̇ cos(θ)

θ̇ = ω

θ̈ = ω̇
ẇl = 1

R v̇ −
1
2
T
R ω̇

ẇr = 1
R v̇ + 1

2
T
R ω̇

(20)

where v = 1
2R(wl + wr), ω = R

T (wr − wl), v̇ = −Kf (v −
vdes), ω̇ = −Kτ (ω − ωdes), R is the wheel radius, T is the
vehicle track (distance between left and right wheels), and
Kf andKτ are the low-level velocity control gains. We apply
a simple observation model on the wheel speeds,

h(xk) =

[
wl
wr

]
The simulated ground robot is commanded to track

a set of trajectories through the environment shown in
Fig. 3 (e.g., for exploration or mapping applications).
The localization system provides state estimates but also
introduces uncertainty in these estimates due to imperfect
registration of laser returns, thus replicating a common
source of state estimate degradation in physical robotic
systems. The dynamics model in (20) yields an MPC
formulation with n = 8 states and m = 2 inputs. We apply
a horizon of N = 10 steps at the controller update rate
(200 Hz) and enforce constraints on the two control
inputs (linear and angular velocity commands) as well as
the translational and rotational rates (ẋ, ẏ, θ̇). The chance
constraint parameter α is set to 0.001 to yield a constraint
satisfaction probability of 99.9%.

To evaluate robust constraint satisfaction performance in
the presence of imperfect state information, we compare
Robust EPC with nominal (i.e., non-robust) EPC when
commanded to track the same trajectory. Although the
simulations are not run on a compute-constrained system
(2.9 GHz Intel mobile processor), the relative query times
demonstrate that the chance constrained extension does
not significantly increase the compute times over regular
EPC. For this trial, EPC yields a mean database query
time of 0.1305 ms with a standard deviation of 0.0927 ms,
while Robust EPC yields a mean of 0.1767 ms with
a standard deviation of 0.1548 ms (R2). Additionally,
both approaches learn and reuse controllers to enforce
constraints, as expected. However, as Fig. 4 illustrates,
Robust EPC computes and reuses more entries in its
controller database, i.e., 17 entries, as opposed to four for
EPC (R3). This increase is consistent with the constraint
tightening formulation, as Robust EPC is expected to
encounter the tightened constraints more frequently than
EPC encounters the nominal constraints.

The effects of this increased database size and application
of the corresponding controllers is evident in the resulting
velocity profiles. Although both EPC and Robust EPC
yield stable trajectory tracking (R1), as Fig. 5 shows, the
nominal EPC formulation yields multiple velocity constraint
violations along both axes. However, Robust EPC only yields
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(b) Robust EPC controller changes over the duration of the trial

Figure 4. (a) EPC on the simulated ground robot computes
and reuses four controllers (indexed 0-3) to enforce the nominal
state and input constraints, while (b) Robust EPC applies 17
controllers to ensure robust constraint satisfaction (an index of
-1 denotes application of the intermediate controller).
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Figure 5. Velocity profiles for the simulated ground robot
tracking the commanded trajectory using EPC and Robust EPC.
The robust formulation yields more reliable constraint
satisfaction (velocity constraints shown by dashed lines).

one small violation of the x-axis velocity constraint, thus
demonstrating robust constraint satisfaction in the presence
of imperfect state information derived from the simulated
laser-based localization system (R4).

3.2 Experimental Platform 1: Small Quadrotor
The first experimental platform we consider is a small,
790 g quadrotor aerial robot equipped with an ODROID-
XU4 (2 GHz ARM processor with 2 GB RAM), as shown
in Fig. 6. All control algorithms are implemented in C++
via ROS (Quigley et al. 2009) and run in real-time on the
ODROID.

The nonlinear dynamics of the quadrotor are modeled as

f(x,u) =


ṗ = v
v̇ = 1

mFRξe3 − ge3

ξ̇ = Sξω
ω̇ = J−1 (τ − ω × Jω)

(21)
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(a) (b)

(c) (d)

(e) (f)

Figure 3. A series of snapshots showing a segment of the ground robot simulation trial. The blue lines denote the trajectory being
tracked by the ground robot as it traverses the unknown environment. The successive frames illustrate the simulated laser scanner
(red dots denote simulated laser returns) building a map of the environment that drives the localization subsystem.

where the constants g, m, and J denote gravity, vehicle
mass, and inertia, respectively. The vector e3 is the third
column of the 3× 3 identity matrix, Rξ denotes the rotation
matrix formed from the ZYX Euler angles ξ that takes
vectors from body frame to world frame, and Sξ is the
inverse of the Jacobian that relates ZYX Euler angle rates to
angular velocities (Michael et al. 2010). We therefore employ
a cascaded control setup with a translational controller
providing references for an attitude controller that, in turn,
provides actuator commands to the motor controllers.

A motion capture arena provides position and heading
feedback that is combined with IMU measurements using an
onboard UKF that employs the observation model,

h(xk) =

[
p
ψ

]
where ψ denotes the yaw component of ξ. Due to the low
variance in the motion capture feedback, we inject Gaussian
noise with changing variance into the motion capture data
to emulate a lower-quality sensor that exhibits changes
in performance as a function of the environment (e.g., a
vision-based sensor transitioning between feature-rich and

Figure 6. The quadrotor and ODROID-XU4 used for
experimental validation of the Robust EPC algorithm.

feature-sparse regions). The changing uncertainty in the
motion capture data is also broadcast to the state estimator
and Robust EPC to inform belief state propagation via the
measurement covariance term in (1).

For these experiments, we consider the problem of
controlling the translational dynamics of the quadrotor
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Figure 7. Snapshots of the quadrotor executing the linear
trajectory.

subject to velocity and control constraints∗. This yields an
MPC formulation with n = 6 states and m = 3 inputs. We
also consider a horizon of N = 25 steps at the control
update rate (100 Hz) for the main Robust EPC formulation.
The nominal state, x∗, is set to the current state at each
control iteration, and the nominal control, u∗, is set to
hover to avoid penalizing gravity compensation. We use
α = 0.001 for a constraint satisfaction probability of 99.9%.
The intermediate controller is formulated with a horizon
of N = 10 to yield comparable solution times to Robust
EPC. The cost function weight matrices are selected such
that a finite-horizon LQR using either set of weights (and
the corresponding horizon) would yield the same gain
matrix. The proportional and derivative gains for the L1

adaptive controller used as a baseline also match this LQR
formulation.

3.2.1 Timescale Separation with Model Adaptation: As
Robust EPC extends EPC, we retain its ability to mitigate
the effects of low-frequency sources of uncertainty (e.g.,
due to bulk fluid flow) via online model adaptation. The
quadrotor is first commanded to track the linear trajectory
in Fig. 7 (five laps between two waypoints about 3.6 meters
apart) subject to a 6 m/s external wind that is orthogonal
to the trajectory, and Fig. 8 shows the resulting cross-track
errors (L1 adaptive control is included for reference). As
expected, all three model adaptation strategies (described
in Sect. 2.4 with parameters tuned empirically) yield low
cross track error, and LWPR and ISSGPR exhibit zero-mean
tracking as they accumulate experience. However, as Fig. 9
illustrates, no choice of adaptation strategy is sufficient to
mitigate the effects of state uncertainty, resulting in repeated
constraint violations. This further demonstrates the need for
the proposed Robust EPC formulation. Moreover, as the
choice of model adaptation strategy does not fundamentally
change the system’s ability to mitigate high-frequency source
of uncertainty, we follow EPC (Desaraju and Michael 2017)
and proceed with LWPR for the following experimental
studies.

3.2.2 Robust Constraint Satisfaction: We first evaluate
Robust EPC’s trajectory tracking performance along the
linear trajectory in Fig. 7. Figure 10 shows that Robust EPC
stabilizes the system to track the trajectory, which achieves
a maximum linear velocity of 2.7 m/s (R1). Table 1 shows
the compute times for the different components of Robust
EPC from one representative trial. This demonstrates that
both the Query and Intermediate controller components,
which constitute the primary control thread, run in real-time
on the computationally constrained flight hardware (R2).
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Figure 8. Cross-track error for quadrotor applying EPC with the
three model adaptation strategies discussed and L1 adaptive
control. LWPR and ISSGPR yield superior tracking after gaining
experience. To better visualize the low-frequency components,
we apply exponential smoothing with a two-second window.
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Figure 9. With injected noise, (non-robust) EPC yields velocity
constraint violations for all three model adaptation strategies.

In contrast, the variance in solving the QP may yield
control iterations that violate the 100 Hz update rate, making
traditional optimization-based Robust MPC approaches
infeasible.

To show robust constraint satisfaction in the presence
of time-varying sensor uncertainty, we inject zero-mean
Gaussian noise with a standard deviation of 0.03 into the
motion capture data when the y-axis position of the vehicle
is between -0.5 m and 0.5 m. This makes satisfaction of the
velocity constraints particularly difficult as the vehicle also
attains its maximum speeds in this region.

In addition to Robust EPC, we consider three baseline
control strategies: L1 adaptive control (a reactive approach),
EPC, and a Robust MPC (R-MPC) formulation that solves
the QP online with N = 10 (the reduced horizon is required
to achieve comparable solution times to EPC) and slack on
state constraints (to ensure problem feasibility). Figure 12
shows the resulting velocity profiles with the constraint
bounds shown by the dashed lines.L1 adaptive control shows
unconstrained control performance, which naturally violates
the constraints as the reference velocity has a maximum
of 2.7 m/s. The enforcement of constraints in EPC yields
smaller constraint violations, but the non-robust formulation

∗The attitude dynamics are stabilized via an instance of EPC with loose
constraints. As the trajectories executed do not approach these constraint
boundaries, we focus the analysis on the translational dynamics where
constraints are activated.

Table 1. Compute times for Robust EPC components running
onboard the quadrotor. The first row indicates the number of
control iterations across which the statistics are computed.

Query Interm. QP Add Element
Iterations 5949 18 12 12

Mean (ms) 1.089 1.303 4.427 4.891
Std. Dev. (ms) 1.463 0.886 2.720 5.393
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Figure 10. Linear trajectory tracking performance across five
laps
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Figure 11. Time spent using each controller per lap. Note that
multiple controllers are learned and reused and that the
intermediate controller (index 1) ceases to be used past lap 3.

of the constraints fails to mitigate the effects of measurement
uncertainty. R-MPC also exhibits substantial constraint
violations. To confirm that the degraded performance of R-
MPC is due to the short horizon and not the slack constraints,
we also compared performance of R-MPC and Robust EPC
with N = 25 using a high-fidelity simulator on a more
powerful computer and observed comparable performance
and robust constraint satisfaction (not shown). Therefore,
these results illustrate that over repeat trials, only Robust
EPC consistently satisfies the velocity constraints (R4).

Figure 11 illustrates controller generation and reuse as
indicated by the amount of time each controller is applied.
Note that the intermediate controller (index 1) is only used
in the first few laps, while controller 2 (corresponding to
operation away from constraints) is applied frequently (R3).
This indicates that over time, all of the controllers needed
to track the trajectory and satisfy constraints are enumerated
and available for use in the experience database.

3.2.3 Time-Varying Uncertainty Prediction: To show that
Robust EPC leverages the Gaussian nature of the state
estimator output and exploits regions of low uncertainty to
improve performance over more conservative approaches,
we investigate its performance compared to an instantiation
of Robust EPC that uses a fixed upper bound on the
uncertainty. We take the maximum bound applied by Robust
EPC during a run of the trajectory as the uncertainty value for
this fixed bound approach. The quadrotor is commanded to
track a vertical circle trajectory while Gaussian noise with
a standard deviation of 0.03 is injected when the vehicle
is below one meter in height. Figure 14 shows tracking
results for Robust EPC using three approaches: Gaussian
belief propagation, the fixed bound approach using the
true upper bound as described above, and the fixed bound
approach using the highest bound that allows for stable
trajectory tracking. The fixed bound approach is unable
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(a) L1 Adaptive Control
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(b) EPC (N = 25)
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(c) Robust MPC (QP, N = 10)
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(d) Robust EPC (N = 25)

Figure 12. Comparison of y-velocity profiles for the quadrotor
tracking the linear trajectory across 5 trials of each controller.
Only Robust EPC satisfies the nominal velocity constraints
(dashed lines).

Figure 13. Quadrotor executing the vertical circle trajectory
used to evaluate belief propagation.
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Figure 14. Quadrotor position along the y- and z-axes for
Robust EPC and the fixed bound approach as compared to the
reference trajectory. The fixed bound approach that uses the
true upper bound (0.53 m/s) fails to track the trajectory. The
mean and max error for Robust EPC along the y-axis are 0.22
and 0.41, respectively, while for the successful fixed bound
approach (0.40 m/s), the mean and max error are 0.24 and
0.51.

Figure 15. Overlay of tube growth for Set Propagation and
Belief Propagation based on the bounds computed by each at
the start of trajectory tracking. Set Propagation growth is too
fast to yield feasible constraints.

to complete the trajectory with the true upper bound, and
Robust EPC yields reduced tracking error compared to
the less conservative fixed bound approach. This confirms
that Robust EPC exploits the low noise region above one
meter and achieves better performance than the conservative
approaches (R5). We also consider uncertainty propagation
via recursive application of the Pontryagin difference with
the uncertainty set (Richards 2005). However, even with the
ancillary controller, this results in an infeasible problem for
the longer horizons permitted by Robust EPC. Figure 15
illustrates the tube growth with a 25-step horizon for the two
approaches.

3.2.4 Aggressive Flight: To further assess the perfor-
mance of Robust EPC, we consider two aggressive flight sce-
narios. The first scenario aims to test constraint satisfaction
on a high speed back and forth trajectory with a maximum
velocity of 3.6 m/s. As Fig. 16 shows, Robust EPC satisfies
velocity constraints throughout the trial with the exception of
a 0.03 m/s violation during the final lap. Due to the chance-
constrained formulation, there is a nonzero probability of
constraint violation (0.1% in our experiments). In addition,
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Figure 16. The quadrotor’s velocity profile applying Robust
EPC along a high-speed linear trajectory. There is a small
constraint violation of 0.03 m/s during the last lap.

0 10 20 30 40 50 60

Time (s)

-2

-1

0

1

2

R
e

fe
re

n
c
e

 T
ra

je
c
to

ry
 (

m
) x

y

Figure 18. The x and y components of the horizontal circle
trajectory showing the three laps executed by the quadrotor.
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Figure 19. Velocity profile for the quadrotor applying Robust
EPC along the circle trajectory in the high-wind scenario. The
velocity obeys the constraint bound aside from one minor
constraint violation of 0.09 m/s.

higher speeds accentuate the effects of modeling errors and
may yield degraded performance if the model adaptation is
not sufficiently fast. As a result, we conclude that Robust
EPC reliably enforces constraints even during aggressive
motion (R6).

In the second aggressive flight scenario, the quadrotor is
commanded to fly three laps around a circle in the x-y plane
that traverses a turbulent wind field generated by eight, high-
power fans, as illustrated in Figs. 17 and 18. The average
wind velocity directly in front of each fan is approximately
6 m/s (Yao et al. 2016), and the placement of the fans around
the flight volume results in significant spatial variation in the
disturbance forces acting on the vehicle. For this scenario,
we employ ISSGPR as the online model learner due to
empirical evidence that it adapts to dynamic scenarios faster
than LWPR (Desaraju 2017).

The reference trajectory commands a maximum velocity
of 2.0 m/s, but due to the wind field, the vehicle may often
overshoot the command. However, Robust EPC enforces
a velocity limit of 2.3 m/s, and as Fig. 19 shows, the
resulting velocity profile satisfies this constraint with just
one minor violation. As a result, we conclude that Robust
EPC adequately handles constraints even during aggressive
flight with strong external perturbations to the dynamics
model (R6).
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Figure 17. Snapshots of quadrotor executing the horizontal circle trajectory in a high-speed, turbulent wind field generated via a
set of eight high-power fans
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Figure 20. Cross-track error while the quadrotor executes the
circle trajectory in the high-wind scenario is nearly zero-mean
and shows some improvement over time.

Due to the velocity constraints being activated in each lap,
it is difficult to assess flight performance via the tracking
error (e.g., a high velocity may be needed to overcome wind-
induced lag). We therefore look at cross-track error as a
measure of the deviation from the trajectory, as shown in
Fig. 20. As Table 2 shows, the cross-track error about all
three axes improves significantly by the third lap as the
controller database and model learner accumulate sufficient
experience. This also matches empirical observations during
the flight test that the vehicle exhibits improved stability and
smoothness over successive laps (R5).

3.3 Experimental Platform 2: Ground Robot
with Laser-based SLAM

The second experimental platform we consider is the skid-
steer ground robot shown in Fig. 21. It is equipped with a
Hokuyo UTM-30LX LIDAR (40 Hz scan rate, 270◦ field
of view with 0.25◦ angular resolution, 30 m range with
30 mm accuracy) and a 3DM-GX3-35 IMU. The Robust EPC
algorithm and the SLAM architecture described in Sect. 3.1
are implemented onboard the robot via a Gigabyte Brix CPU
(2.4 GHz Intel i7 processor with 16 GB RAM).

We employ a slight variation on the simulated dynamics
model (20) with a state space representation consisting
of position, heading, and individual wheel velocities. The

nonlinear dynamics model is given below

f(x,u) =


ẋ = v cos(θ)
ẏ = v sin(θ)

θ̇ = ω
ẇl = 1

R v̇ −
1
2
T
R ω̇

ẇr = 1
R v̇ + 1

2
T
R ω̇

(22)

where v = 1
2R(ωl + ωr) and ω = R

T (ωr − ωl) are the
longitudinal and angular velocities, R is the wheel radius,
and T is the track length of the vehicle. As the robot has
low-level velocity controllers, the control inputs available to
Robust EPC are the desired linear and angular velocities, vd
and ωd, respectively, which enter (22) via linear and angular
accelerations,

v̇ =
F

m
where F = −Kf (v − vd)

ω̇ =
τ

J
where τ = −Kτ (ω − ωd)

with Kf and Kτ denoting the low-level controller gains, m
is the robot mass, and J is the robot inertia.

This model yields a Robust EPC formulation with n = 5
states, m = 2 inputs, and N = 10 steps at the controller
update rate of 200 Hz. We set the chance constraint
parameter to α to 0.001 for a constraint satisfaction
probability of 99.9%. The ground robot is commanded to
track a trajectory through a long hallway, as shown in Fig. 22
and Fig. 23, with constraints on longitudinal velocity and
control inputs.

To verify constraint satisfaction, we first observe that
Robust EPC computes and switches between 13 different
controllers while executing this trajectory (R3). Figure 24
shows the velocity profiles for both EPC and Robust EPC
executing this trajectory (R1). As expected, Robust EPC
yields more reliable constraint satisfaction than EPC (R4).
We do observe a brief constraint violation by Robust
EPC though, similar to Sect. 3.1. While there is a small
probability of constraint violation due to the chance-
constrained formulation, this violation may also be indicative
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Table 2. Cross-track error statistics for the quadrotor executing the high-wind, horizontal circle trajectory

x-axis y-axis z-axis
Mean (m) Std. Dev. (m) Mean (m) Std. Dev. (m) Mean (m) Std. Dev. (m)

Lap 1 0.0287 0.0893 0.0075 0.0694 0.0161 0.0364
Lap 2 0.0266 0.1060 0.0061 0.1057 0.0242 0.0528
Lap 3 0.0110 0.0785 0.0012 0.0740 0.0022 0.0378

(a) (b) (c) (d)

Figure 22. Snapshots of the ground robot platform tracking a trajectory through a 17.5 m long hallway. The green line indicates the
robot trajectory and the black borders are the environment map constructed via the laser-based SLAM architecture.

Figure 21. The laser-equipped ground robot platform used for
experimental validation.

of insufficiently fast convergence in the LWPR model learner
to capture fast, unmodeled dynamics (e.g., actuator effects).

As the ground robot has substantially increased compu-
tational resources compared to the quadrotor in Sect. 3.2,
Robust EPC yields a mean database query time of 0.090 ms
with a standard deviation of 0.0182 ms (R2). However,
the increased resources stem from the need to run other
processes for autonomy. Therefore, we also note that Robust
EPC consumes less than 10% of the total CPU time and
less than 0.1% of the total memory, thereby enabling more
computationally expensive processes, such as SLAM (33%
CPU time) or trajectory planning, to operate unimpeded.

Figure 23. Overlaid video frames showing the ground robot
tracking the trajectory through the long hallway via SLAM-based
localization.

3.4 Experimental Platform 3: Hexarotor with
Visual Odometry

The third experimental platform is the 3.46 kg hexarotor
aerial robot shown in Fig. 25. The hexarotor obtains state
feedback via a visual odometry system that consists of a
sparse Lucas-Kanade tracker (Baker and Matthews 2004)
applied to a discrete grid of points on a downward facing
mvBlueFox camera’s image stream running at 60 Hz. Ego
motion of the vehicle is unrotated using an onboard VN100
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Figure 24. Longitudinal velocity profiles for the ground robot
running EPC and Robust EPC. The dashed line indicates the
enforced constraint bound.

Figure 25. The hexarotor platform with a self-contained visual
odometry system.

IMU, and a TeraRanger One laser altimeter provides scale.
An unscented Kalman filter fuses the Lucas-Kanade tracker,
altimeter readings, and VN100 IMU outputs to generate
the state estimate. A window of 10 readings is used to
compute running estimates of the standard deviation for the
Lucas-Kanade tracker’s estimated velocities, which are used
to calculate the diagonal entries of the measurement noise
covariance matrix. Robust EPC and the visual odometry
system are implemented on the hexarotor’s NVIDIA Jetson
TX2 CPU (2 GHz ARM Cortex-A57, 2 GHz NVIDIA
Denver2, 8 GB RAM).

We consider the same dynamics model and Robust
EPC formulation used for the quadrotor in Sect. 3.2 with
appropriate changes to the vehicle parameters and cost
function. As the availability of the estimated measurement
noise covariance yields more accurate belief propagation, we
apply a reduced α of 0.01 to yield a constraint satisfaction
probability of 99%.

The hexarotor tracks a series of smooth, linear trajectories
at varying altitudes, as shown in Fig. 26 and Fig. 27 (R1).
While tracking these trajectories, Robust EPC computes and
switches between 33 different controllers (R3), and the mean
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Figure 26. The set of random trajectories tracked by the
hexarotor.

Figure 27. Overlay of snapshots showing the hexarotor
executing a short segment of the random set of trajectories.

database query time is 0.808 ms with standard deviation of
1.57 ms (R2).

The visual odometry system provides both the state
estimate covariance and an estimate of the time-varying
sensor measurement covariance, thus enabling Robust EPC
to adapt the constraint tightening bounds over time.
However, the fidelity of the visual odometry system degrades
with increasing vehicle velocity (e.g., due to motion blur
and reduced correspondences across image frames) and
with increasing altitude (e.g., due to increased image
coarseness). Figure 28 illustrates this behavior. The variation
in the constraint bound, δx, shown in Figs. 28a and 28c,
automatically reflects the increase in uncertainty when the
vehicle velocity increases (Figs. 28b and 28d) or altitude
increases (Fig. 28e).

Figure 29 shows the results of a non-robust EPC executing
the trajectory, resulting in repeated violations of the velocity
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Figure 28. Constraint bounds on hexarotor x-velocity (a) and
y-velocity (c) vary with the vehicle’s current speed in each
direction (b,d) and altitude (e), reflecting the changing
uncertainty reported by visual odometry.
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Figure 29. Velocity profile for the hexarotor applying
(non-robust) EPC. The dashed lines indicate the constraint
bounds.

constraints. In contrast, Robust EPC leverages this time-
varying constraint bound and is more conservative at
higher speeds or altitudes, thus yielding robust constraint
satisfaction, as illustrated in Fig. 30 (R4).
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Figure 30. Velocity profile for the hexarotor applying Robust
EPC. The dashed lines indicate the constraint bounds.

4 Conclusions and Future Work
In this work, we present an extension to Experience-driven
Predictive Control (EPC) that yields robust constraint satis-
faction in the presence of time- and state-dependent uncer-
tainty. We have shown through simulation and experimental
studies with three platforms, that the proposed approach,
Robust EPC, successfully stabilizes the vehicle along a
variety of trajectories (R1), easily meets computational
requirements on a compute-constrained system (R2), lever-
ages past experiences via controller reuse (R3), reliably
satisfies constraints in the presence of time-varying sen-
sor uncertainty (R4) while improving tracking performance
as compared to conservative methods (R5), and maintains
constraint satisfaction properties during aggressive opera-
tion (R6). Moreover, the ground robot and hexarotor experi-
ments demonstrate that Robust EPC yields robust constraint
satisfaction with realistic state estimation systems.

The current Robust EPC formulation assumes that the
uncertainty is well-modeled by a Gaussian distribution, but
a potential future direction is to incorporate distributions
without closed-form propagation models. This formulation
can also be extended to account for additional sources
of uncertainty, including communication latency and the
variance in model adaptation techniques such as LWPR and
ISSGPR.
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