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Abstract— This work presents Experience-driven Predictive
Control (EPC) as a fast technique for solving nonlinear model
predictive control (NMPC) problems with uncertain system
dynamics. EPC leverages an affine dynamics model that is
updated online via Locally Weighted Projection Regression
(LWPR) to capture nonlinearities, uncertainty, and changes in
the system dynamics. This model enables the NMPC problem
to be re-cast as a quadratic program (QP). The QP can then be
solved via multi-parametric techniques to generate a mapping
from state, reference, and dynamics model to a locally optimal,
affine feedback control law. These mappings, in conjunction
with the basis functions learned via LWPR, define a notion
of experience for the controller as they capture the full input-
output relationship for previous actions the controller has taken.
The resulting experience database allows EPC to avoid solving
redundant optimization problems, and as it is constructed
online, enables the system to operate more efficiently over
time. We demonstrate the performance of EPC through a
set of hardware-in-the-loop simulation studies of a quadrotor
micro air vehicle that is subjected to unmodeled exogenous
perturbations.

I. INTRODUCTION

As robots are deployed in complex and unknown real-
world environments, the ability to track trajectories ac-
curately becomes essential for safety. However, accurate
tracking can be particularly difficult to achieve if the robot’s
dynamics change online, e.g., due to environmental effects or
hardware degradation. Furthermore, operation in these types
of environments may preclude reliable, high-rate communi-
cation with a base station, and as a result, the robot must
be able to operate safely and reliable with typically limited
onboard computational resources. Therefore, in this work we
develop a computationally-efficient feedback control strategy
that leverages past experiences to enable accurate and reliable
operation in the presence of unmodeled system dynamics.
The proposed approach employs infrequent online optimiza-
tion to construct a database of reusable affine feedback
controllers that are parameterized by the system dynamics
and locally recover the performance of a Nonlinear Model
Predictive Controller. Furthermore, we combine this database
with an online learned model of the system dynamics to
enable adaptation to model perturbations.

High-rate adaptive control is readily achieved via feedback
control techniques such as model-reference adaptive con-
trol [1] and L1 adaptive control [2]. However, this simplicity
may be at the expense of safety, as such methods do not
provide constraint satisfaction guarantees and are purely
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reactive techniques that seek to eliminate the effects of
unmodeled dynamics, even when they may be beneficial. In
contrast, model predictive control (MPC) techniques seek to
balance the reactive nature of traditional feedback controllers
and the anticipative nature of infinite-horizon optimal control
techniques. Thus, MPC yields improved trajectory tracking
via finite-horizon optimization while reducing computational
complexity relative to infinite-horizon formulations.

However, performance of these predictive approaches is
largely dependent on the accuracy of the prediction model.
When applied to a linear system, or a system that does
not deviate significantly from a nominal operating point, the
linear MPC problem can be formulated and solved efficiently
as either a constrained linear or quadratic program [3].
However, if the operating range deviates greatly from a
nominal linearization point, the formulation must account
for the nonlinear dynamics to ensure that the optimization
is performed with respect to an accurate prediction of the
system evolution. Moreover, even a fixed nonlinear model
may be insufficient to accurately predict the system’s motion
due to modeling errors and unmodeled dynamics. The use
of a nonlinear dynamics model also significantly increases
the computational complexity of the resulting nonlinear MPC
(NMPC) problem, which must be formulated as a constrained
nonlinear program.

Therefore, there are two key challenges that must be
addressed in order to apply NMPC to these challenging,
high-rate control problems: (1) maintaining an accurate
model of uncertain, time-varying dynamics, and (2) reducing
complexity to increase computational efficiency.

A. Model Accuracy

The issue of model accuracy for predictive control has
been addressed through various adaptation and learning-
based approaches. Most existing adaptive MPC approaches
assume a structured system model with uncertain parameters
that can be estimated online. These approaches then com-
bine a standard MPC formulation with an online parameter
estimator, e.g., a Luenberger observer or Kalman filter, to
achieve more accurate, deliberative actions [4]–[6].

However, treating all model uncertainty as estimable pa-
rameters can limit the overall model accuracy, particularly
when the system is subject to complex, exogenous pertur-
bations, such as aerodynamic effects on an aerial vehicle.
Learning-based function approximation techniques can be
applied to address this issue. The resulting semi-structured
approaches augment a structured system model with a non-
parametric, online-learned component, e.g., via a Gaussian



process [7]. The resulting model is then queried within
the NMPC formulation while continuing to adapt to model
changes. While techniques such as Gaussian process regres-
sion scale poorly with the amount of training data, another
kernel-based approach, Locally Weighted Projection Regres-
sion (LWPR), summarizes training data using linear basis
functions [8]. The resulting incremental updates enable fast
model learning that is suitable for finite-horizon control [9].

B. Computational Efficiency

Computational efficiency can be evaluated in terms of
increased solution speed and decreased redundant compu-
tation. For linear MPC formulations, there are a variety
of techniques aimed at increasing solution speed. Several
of these approaches leverage efficient convex optimization
techniques [10, 11] and exploit matrix structure in the LP or
QP formulations [12] to compute solutions quickly. Alter-
natively, explicit MPC approaches precompute the optimal
linear MPC solutions for a polytopic decomposition of the
state space, reducing the complexity of online computa-
tion [13, 14]. Other approaches, such as partial enumeration
(PE) [15], balance the strengths of the online and offline
approaches and yield fast solution times on large problems.

While some fast, online NMPC solution techniques have
been developed, they rely on iterative, approximate so-
lution techniques built around fast convex optimization
solvers [16]–[18]. Consequently, they inherently cannot
achieve the solution speeds attained by linear MPC formula-
tions. Explicit NMPC [19] moves the optimization offline to
achieve high-speed online control, but it is known to scale
poorly as the resulting lookup table grows exponentially
with the horizon length and number of constraints. As a
result, NMPC has not been amenable to high-rate, real-time
operation, particularly on systems with severe computational
constraints. The nonlinear partial enumeration (NPE) algo-
rithm [20] combines linear and nonlinear formulations to
achieve high-rate predictive control with a nonlinear model,
while also improving performance over time to better ap-
proximate the NMPC solution. However, its dependence on
nonlinear optimization for performance improvement limits
scalability and the rate at which performance improves.

While some MPC algorithms seek to reduce the amount
of redundant computation performed by reusing past solu-
tions [10], they still must solve an optimization problem at
every control iteration. PE-based techniques achieve greater
efficiency through the online creation of a controller database
that dramatically reduces the number of optimization prob-
lems that must be solved. However, as these methods assume
the dynamics model is fixed and accurate, the controllers
produced are invalidated if the dynamics change.

The construction of a database from past actions in order
to facilitate choosing future actions is also the foundation
of transfer and lifelong learning algorithms. These learning-
based approaches consider executing tasks that, by analogy
to the PE approaches, can be viewed as a particular state-
reference sequence. Transfer learning seeks to use experience
gained from past tasks to bootstrap learning a new task [21],

similar to efficient MPC strategies [10]. Lifelong learning
shares similarities with the PE approaches in that it makes
this experience transfer bidirectional to learn policies that
maximize performance over all past and present tasks [22].
However, the PE approaches maintain a finite set of con-
trollers that are updated through infrequent computation
and do not permit interpolation. Whereas lifelong learning
algorithms, such as ELLA [22] or OMTL [23], maintain
a set of bases derived from past experience that aid in
reconstructing task models whenever new data is received.

Therefore, we propose an Experience-driven Predictive
Control (EPC) methodology that combines aspects of NPE
with online model learning via LWPR. As in NPE, EPC
leverages an online-updated database of past experiences in
order to achieve high-rate, locally-optimal feedback control
with constraint satisfaction. However, we also parameterize
the learned feedback control laws by the system dynamics,
enabling online adaptation to model perturbations as the
system accumulates experience. This manuscript refines an
earlier workshop presentation [24] and includes an assess-
ment of real-time, hardware-in-the-loop performance.

II. APPROACH

In this section, we present the Experience-driven Pre-
dictive Control (EPC) algorithm for fast, adaptive, nonlin-
ear model predictive control. In the context of predictive
control, we first define experience to be the relationship
between previous states, references, and system dynamics
models and the optimal control law applied at that time.
Past dynamics models capture the effects of uncertainty on
observed system evolution, while previous states capture the
system’s behavior under optimal control policies for a given
dynamics model. Therefore, EPC constructs and leverages a
two-part representation of past experiences to improve the
accuracy of its finite-horizon lookahead. The first is the set
of linear basis functions maintained by the Locally Weighted
Projection Regression (LWPR) algorithm [8] that capture
observed variations in the system dynamics. The second is
a mapping from states and references to locally optimal
controllers that is updated online and is parameterized by
the current estimate of the vehicle dynamics.

A. Online Model Adaptation via LWPR

Predictive control techniques for nonlinear systems em-
ploy either a nonlinear dynamics model that incurs the
complexity of solving nonlinear programs or a more com-
putationally efficient local approximation of the nonlinear
dynamics. Therefore, given the nonlinear dynamics ẋ =
f(x,u), nominal state x∗, and nominal control u∗, we define
x̄ = x − x∗ and ū = u − u∗ and derive an affine
approximation of the dynamics via a first-order Taylor series
expansion, x̄nom

k+1 = Ax̄k + Būk + c. We extend this model
with an online-learned component via LWPR that estimates
perturbations to the nominal model, including nonlinearities,
modeling errors, and unmodeled exogenous forces.

LWPR models a nonlinear function (from an input z to
an output y) by a Gaussian-weighted combination of local



linear functions [8]. These basis functions encapsulate all
past dynamics information, in contrast to storing all past
training data as in a Gaussian process. New linear functions
are introduced as required when the existing set of bases are
insufficient to represent new data with the desired accuracy.
It also has a forgetting factor to control rate of adaptation
to model changes by adjusting the effects of prediction error
on the weight for each basis. As a result, LWPR is robust to
uninformative or redundant data, retains information captur-
ing all past experience, and adapts its estimate to changing
dynamics. TT LWPR updates its estimate incrementally via
partial least squares, with O(|z|) complexity, making it well-
suited to real-time operation.

Taking z =
[
xT
k uT

k

]T
and y = x̄k+1 − x̄nom

k+1, the
prediction output ŷ gives the estimated perturbation to the
nominal dynamics model at a query point z (where the
nominal model is given by the Taylor approximation about
z). The total predictive dynamics model is then given by

x̄k+1 = x̄nom
k+1 + ŷ = Ax̄k + Būk + c + ŷ (1)

As LWPR learns the perturbation model online, it may
initially return high-variance estimates when the system
enters a new region of the input space (i.e., values of z
for which the system has minimal experience). Therefore,
to limit the effects of the resulting transients in the estimate,
we introduce a simple gate based on the model uncertainty
maintained by LWPR. If model uncertainty is high at a given
query point, we instead use a zero-order hold on the previous
estimate. As the system continues to gain experience in its
operating domain, this gate will cease to be applied.

Finally, following the insight from L1 adaptive control [2],
we introduce a low-pass filter on the disturbance estimate
before it is incorporated into the predictive model (1). This
formulation enables LWPR to learn the perturbation model
quickly while limiting changes to system dynamics to be
within the bandwidth of the system.

B. Receding-Horizon Control Formulation

The use of an affine model (1) that automatically adapts to
capture the effects of nonlinearities and unmodeled dynamics
permits a simplified optimal control formulation for EPC
relative to techniques such as nonlinear partial enumeration
(NPE) that require solving a nonlinear program due to the
general nonlinear dynamics model. Taking the current state
as the nominal state, x∗ = x0, and given N reference states
r1, . . . , rN , let r̄ = r − x∗. We formulate the receding-
horizon control problem as a quadratic program:

argmin
ūk

N−1∑
k=0

1

2
(x̄k+1 − r̄k+1)TQ(x̄k+1 − r̄k+1)

+
1

2
(ūk − ūŷ)TR(ūk − ūŷ)

s.t. x̄k+1 = Ax̄k + Būk + c̃

Gxx̄k+1 ≤ gx

Guūk ≤ gu

∀ k = 0, . . . , N − 1

(2)

where c̃ = c+ ŷ. If a control input, ūŷ, can be derived from
the model adaptation term (e.g., if ŷ is an acceleration dis-
turbance, ūŷ is the corresponding force) we subtract it in the
cost function to avoid penalizing disturbance compensation.

To simplify notation, define x =
[
x̄T

1, . . . , x̄
T
N

]T
, r =[

r̄T
1, . . . , r̄

T
N

]T
, u =

[
ūT

0, . . . , ū
T
N−1

]T
, uŷ =

[
ūT
ŷ, . . . , ū

T
ŷ

]T

B =


B 0 . . . 0
AB B . . . 0

...
...

. . .
AN−1B AN−2B . . . B

 , c =


c̃

(A + I) c̃
...∑N−1

i=0 Aic̃

 ,
Q = diag(Q, . . . ,Q), R = diag(R, . . . ,R), Gx =
diag(Gx, . . . ,Gx), Gu = diag(Gu, . . . ,Gu), gx =[
gT
x, . . . ,g

T
x

]T
, and gu =

[
gT
u, . . . ,g

T
u

]T
. Also, noting that

x̄0 = 0, we can rewrite (2) as

argmin
u

1

2
(x− r)TQ(x− r) +

1

2
(u− uŷ)TR(u− uŷ)

s.t. x = Bu+ c

Gxx ≤ gx
Guu ≤ gu

We can construct an equivalent QP entirely in terms of
u by substituting the dynamics constraints and dropping
constant terms in the cost function

argmin
u

1

2
uTHu+ hTu

s.t. Γu ≤ γ
(3)

where H = BTQB + R, h = BTQ(c− r)−Ruŷ,

Γ =

[
GxB
Gu

]
, and γ =

[
gx − Gxc
gu

]
Defining λ as the vector of Lagrange multipliers and Λ =

diag(λ), the first two Karush-Kuhn-Tucker (KKT) optimality
conditions (stationarity and complementary slackness) for the
QP can then be written as

Hu+ h+ Γ Tλ = 0

Λ(Γu− γ) = 0
(4)

If we only consider the active constraints (i.e., with λ > 0)
for a given solution, we can reconstruct u and λ by solving
a linear system derived from (4), where the subscript a
indicates rows corresponding to the active constraints[

H Γ T
a

Γ a 0

] [
u
λa

]
=

[
−h
γa

]
Assuming the active constraints are linearly independent

(Bemporad, et al. [13] suggest alternatives if this assumption
fails), the resulting QP control law, u, is affine in the
predicted state error, r, and parameterized by the system
dynamics

u = E5r −

E5c− E4Ruŷ + E3


g+
x − Gxc
−g−x + Gxc

g+
u

−g−u


a

 (5)



where E1 = Γ aH−1, E2 = −(E1Γ
T
a)−1, E3 = ET

1E2,
E4 = H−1 + E3E1, and E5 = E4BTQ. Moreover, since
the coefficients in (5) are all functions of A, B, and c̃, the
overall control law κ(x0, r1, . . . , rN ) can be written in terms
of a parameterized feedback gain matrix K and feedforward
vector kff

κ(x0, r1, . . . , rN ) = K(A,B, c̃)r + kff(A,B, c̃) (6)

This parameterization also extends to the KKT condition
checks to determine whether a previously computed con-
troller is locally optimal. The active Lagrange multipliers
λa follow a similar form to the control law

λa = −E6r +

E6c− ET
3Ruŷ + E2


g+
x − Gxc
−g−x + Gxc

g+
u

−g−u


a


(7)

where E6 = ET
3B

TQ.
Therefore, instead of storing the affine controller gains

and Lagrange multipliers required to evaluate the KKT
conditions, it is sufficient to store only the set of active
constraints. This enables a memory-efficient implementation
for constrained systems. The controller and KKT matrices
can then be reconstructed online using (5), (7), and the cur-
rent A,B, c̃. Consequently, this parameterized formulation
enables us to adapt and apply any previously computed con-
troller, when appropriate according to the KKT conditions,
even as the system dynamics evolve. The complete algorithm
is detailed below.

C. EPC Algorithm

As described in Alg. 1, EPC constructs a database defined
as a mapping M from experiences to controllers. At the
beginning of each control iteration, EPC queries the current
state and reference, as well as the current affine model from
LWPR, (A,B, c̃). It then queries the parameterized mapping
(line 6), and if the KKT conditions are met for an element,
applies the corresponding controller. If no controller from
prior experience is applicable (line 14), it solves the QP
(3) to add a new parameterized element to the mapping,
updating the stored experiences with the current scenario.
In parallel, EPC applies commands from a short-horizon
intermediate QP with slack on state constraints (to ensure
problem feasibility), in order to maintain a desired control
update rate (line 15). As new controllers are added to the
database, less valuable controllers (indicated by a lower
importance score) are removed (line 19) to bound the
number of elements that may be queried in one control
iteration, thereby ensuring computational tractability.

In addition to introducing adaptation to unmodeled dynam-
ics, the parameterization by experience and the introduction
of an online updated linear dynamics model eliminates the
most computationally expensive component of NPE - the
nonlinear program. Although the nonlinear program does not
limit the control rate in NPE, it does limit how quickly
new controllers can be computed, consequently limiting

Algorithm 1 Experience-driven Predictive Control

1: M← ∅ or Mprior
2: while control is enabled do
3: x← current system state
4: r ← current reference sequence
5: A,B, c̃← current dynamics model from LWPR
6: for each element mi ∈M do
7: Compute u,λa via (5),(7)
8: if x, r satisfy parameterized KKT criteria then
9: importancei ← current time, sort M

10: solution found ← true
11: Apply affine control law (6) from mi

12: end if
13: end for
14: if solution found is false then
15: Apply interm. control via (3) with slack variables
16: Update QP formulation with current model
17: Generate new controller via QP (3) (in parallel)
18: if |M| > maximum table size then
19: Remove element with min. importance
20: end if
21: Add mnew = (K,kff,importance) to M
22: end if
23: end while

the practical horizon length and increasing the dependence
on the intermediate controller. With its quadratic program
formulation, EPC has the advantage of faster solution times
in the parallel thread that can be leveraged to reduce the
dependence on the intermediate controller or increase the
prediction horizon. Additionally, the nonlinear program solu-
tions in NPE serve as fixed feedforward terms in the resulting
affine control laws, precluding a completely adaptive control
strategy. With EPC, the local controllers are fully parame-
terized, allowing controllers computed using past experience
to be adapted to the present scenario.

III. RESULTS

To validate the performance of the EPC algorithm, we
seek to demonstrate the following results: R1: stable control
performance with constraint satisfaction, R2: real-time com-
putation of control commands, R3: adaptation performance,
and R4: applicability of experiences to novel scenarios. Thus,
we conduct a series of hardware-in-the-loop simulations of
a quadrotor micro air vehicle tracking trajectories that cross
a region where strong, exogenous disturbances (e.g., wind)
act on the vehicle.

Experimental Design and Implementation Details: The
simulator and controller are built around ROS [25], and
the controller uses the qpOASES library [26] to solve the
quadratic programs. To assess performance on a constrained
computational platform, the simulation trials are run on an
ODROID-XU4 (2 GHz ARM processor with 2 GB RAM)
that satisfies the size, weight, and power limitations of a
small, 750 g quadrotor. We employ a standard hierarchical
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Fig. 1: Snapshots of the quadrotor executing the elliptical trajectory that traverses the disturbance region (highlighted).

control setup [27], applying EPC separately to the transla-
tional and rotational dynamics.

The quadrotor is commanded to fly ten laps at 0.7 m/s
around an elliptical trajectory (Fig. 1) that intersects a region
in which a constant disturbance torque is applied about the x
and y axes. Given that the disturbance acts on the rotational
dynamics, we focus on the EPC used for attitude control
in the following results. The attitude dynamics are modeled
by six states (body frame Euler angles and rates) with one
torque input about each axis [27], and we select a horizon
(N ) of 15 control iterations to ensure that the predicted
state evolution captures the effects of the control inputs.
As attitude controllers are commonly run at rates exceeding
200 Hz to ensure stability of these fast dynamics [20], we
note that a viable attitude controller must consistently return
a control command within 5 ms.

Constraint Satisfaction: To demonstrate safety under lim-
ited control authority, we enforce constraints on the torque
control inputs that are more restrictive than the nominal
commands that would be applied to track the trajectory.
As a result, these constraints are activated repeatedly as
the vehicle tracks the trajectory. In order to satisfy these
constraints, EPC learns 22 different parameterized feedback
control laws, as shown in Fig. 2. Moreover, the intermediate
controller (denoted controller 0) is only applied in the early
laps, indicating that the majority of the controllers are
learned quickly and then reused in subsequent laps. This
intelligent controller switching also yields reliable constraint
satisfaction (R1), as shown in Fig. 3.

Real-time Computation: Over the course of this trial,
the mean time required to query the controller database is
0.77 ms with a standard deviation of 0.75 ms. In contrast,
the mean time to solve the equivalent QP is 4.7 ms with a
standard deviation of 3.2 ms, which violates the consistent
5 ms command requirement. This confirms that EPC is a
computationally efficient approach for adaptive nonlinear
model predictive control suitable for high-rate applications,
such as attitude control of a quadrotor, even on computation-
ally constrained platforms (R2).

Adaptation Performance: In addition to constraint satis-
faction, EPC substantially improves trajectory tracking accu-
racy in the presence of sudden changes to the system dynam-
ics, as shown in Fig. 4. As expected, tracking performance
improves over time with the accumulation of experience. In
addition to extending the controller database, this experience
refines the LWPR model. Consequently, the model yields
increasingly accurate estimates of the exogenous torques, as
shown in Fig. 5.

Figure 6 illustrates the performance of EPC relative to
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Fig. 2: Learned controllers are reused in subsequent laps,
ultimately eliminating the dependence on the intermediate
controller (column 0). Colors denote the total usage time (in
seconds) for each controller.
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Fig. 3: EPC successfully satisfies roll and pitch control input
constraints (dashed red lines) via controller switching.

two baseline approaches: L1 adaptive control (L1AC) [2]
and an adaptive MPC formulation based on a state predictor
(Luenberger observer). The gains for the L1AC are selected
to match the nominal gains computed by EPC. The low-
pass filter bandwidth is equivalent for both controllers to
ensure a fair comparison of the adaptation laws. As the
core EPC formulation is equivalent to a quadratic program-
based MPC, we consider EPC with the Luenberger observer
as the second baseline. Additionally, while EPC embeds
the disturbance estimate in the prediction model to enable
constraint satisfaction, L1AC adds it as a compensation
term to the resulting command. It therefore lacks any safe
means of constraint satisfaction, precluding a comparison
of constrained control performance. We therefore loosen the
EPC control input constraints to aid comparison.

As Fig. 6 shows, EPC (after obtaining sufficient experi-
ence) reduces peak tracking error by an average of 26.8%
relative to L1 adaptive control. EPC (with LWPR) also
reduces peak tracking error by an average of 17.2% relative
to the variant with a Luenberger observer, confirming that
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Fig. 4: Comparison of EPC tracking performance with and
without LWPR-based adaptation.
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Fig. 5: LWPR accurately estimates the torque disturbances
about the x- and y-axes as it tracks the elliptical trajectory.

the improvement relative to L1AC is not simply due to
integrating the estimate into the prediction model. Moreover,
these results show that the combination of a predictive
controller driven by an online learned, reusable model yields
significantly improved tracking performance (R3).

Application to Novel Scenarios: Finally, to evaluate the
generalizability of experience, we consider a more complex
scenario. Over the course of this 1000 s trial, the quadrotor
is commanded to track a series of smooth but random tra-
jectories through the same environment as before. Figures 7
and 8 show these trajectories, which achieve maximum com-
manded velocities of 1.7 m/s and accelerations of 5.1 m/s2.
The vehicle dynamics are also perturbed by a stochastic
process emulating turbulent air flow, introducing noise into
the LWPR training data.

Due to the randomization, the quadrotor enters and exits
the disturbance region following a variety of trajectories.
The resulting disturbance estimate (Fig. 9) shows transient
behavior during the initial traversals of the disturbance region
(e.g. during the first 200 s of the trial), with disturbance esti-
mate rise times greater than 1.5 s. However, these transients
do not reappear, even as the vehicle traverses the region in
previously unseen ways while executing this diverse set of
trajectories. Moreover, the disturbance estimate has a consis-
tent rise time of approximately 0.5 s for the remainder of the
trial (R3). This indicates that the experience gained through
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Fig. 6: EPC with LWPR yields improved position tracking
error compared to L1 adaptive control (L1AC) and EPC with
a simple state predictor (EPC-Luenberger).

Fig. 7: Representative trajectories entering and exiting the
disturbance region (highlighted), taken from a 100 s window
of the randomized trial.

the initial traversals is applicable to the numerous novel
scenarios encountered in the future and yields a consistent
improvement in disturbance estimation performance (R4).

The controller also performs as expected (R1). Even for
this long trial with diverse trajectories, EPC only computes
52 controllers to maintain constraint satisfaction (see Fig. 10)
and achieves comparable query times to the previous trial.
These results again illustrate the computational efficiency of
this Experience-driven Predictive Control approach and its
suitability for use on flight-viable constrained computational
platforms (R2).

IV. CONCLUSIONS AND FUTURE WORK

In this work, we present the Experience-driven Predictive
Control (EPC) algorithm for fast, adaptive, nonlinear model
predictive control. EPC constructs a database of reusable
feedback controllers that are parameterized by the system
dynamics. When combined with an online-learned model
of the system dynamics using Locally-Weighted Projection
Regression (LWPR), this enables online adaptation to per-
turbations to the dynamics model. As the system gains
experience through operation, both the controller database
and the dynamics model are improved to yield increased
tracking accuracy, even in the presence of sudden changes
in the dynamics model. This also implies that if the system is
initialized with prior experience (e.g., from past operation),
it could further reduce the transient effects of learning.

The hardware-in-the-loop simulation trials presented in
this work provide a preliminary assessment of the EPC algo-
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Fig. 8: Reference trajectory components for the randomized
trial with the disturbance region highlighted along the x-axis

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.1

0

0.1

0.2

R
o

ll 
d
is

tu
rb

a
n
c
e
 (

N
 m

)

0 100 200 300 400 500 600 700 800 900 1000

Time (s)

-0.3

-0.2

-0.1

0

0.1

P
it
c
h
 d

is
tu

rb
a

n
c
e
 (

N
 m

)

Fig. 9: Roll and pitch disturbance estimates for the ran-
domized trial show an initial transient but have consistent
performance for the remainder of the trial
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Fig. 10: EPC satisfies control input constraints for the entire
duration of the randomized trial while tracking a diverse set
of trajectories

rithm and demonstrate its viability for real-time operation on
computationally constrained platforms. We have equipped a
small-scale quadrotor with this computational platform and
intend to pursue experimental validation of the approach in
the presence of real-world unmodeled dynamics.
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