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Abstract—In search and rescue scenarios, it is important to
find survivors and map their locations quickly and efficiently.
This paper presents a multimodal exploration and mapping
approach that extends an occupancy grid map formulation
to incorporate conditionally dependent sensor observations
from multiple sensors and enables reasoning about uncertainty
to select maximally informative actions. Temperature from a
simulated thermal camera and range from a simulated time-
of-flight camera provide updates to spatial and thermal dense
voxel maps. The information gain is computed as the sum of the
Mutual Information between the depth sensor and spatial map
and Conditional Mutual Information between the multimodal
sensor and map. Formulating multimodal exploration and
mapping in this way results in selecting actions that drive
the robot to collect thermal observations of occupied regions
and reduce the uncertainty of both the occupancy state and
temperature state of the environment. The performance of the
proposed methodology is evaluated through simulations with an
aerial robot exploring an office room and compared to state-
of-art information-theoretic exploration techniques.

I. INTRODUCTION

Robots are being increasingly used to aid in disaster
response [1]]; however, the state-of-art robotic systems lack
the required autonomy that would enable them to be deployed
in an unknown environment and search for survivors [2]].
One of the challenges to overcome is the lack of active per-
ception methodologies that enable the robot to sense, think,
and act autonomously. Methods exist to map the interior
of a room or rooms using depth sensors or lasers [3l i4].
However, these methods do not reason about multimodal
sensors and maps. This paper presents a framework that
extends the occupancy grid map formulation to incorporate
the conditional dependence that (in this case) arises in spatial
and thermal modalities. To this end, temperature values are
incorporated into the map if the value is associated with
current or prior depth information. The Conditional Mutual
Information (CMI) is employed to quantify the information
gain between the multimodal sensors and map. In addition
to search and rescue applications the proposed methodology
is relevant to a wide range of domains including planetary
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pit and cave exploration, robotic modeling of infrastructure
such as bridges, and gas detection in abandoned mines.

Hahn et al. [5] equipped a robot with three thermophile
arrays and updated a heat map with the current temperature
reading weighted by the distance to the averaged room tem-
perature. They also propose an online method that computes
the most likely victim position over a range of updates
but note that the method is computationally expensive as
it requires the robot to return to the observation position
where the victim is believed to be located. While similar
in application and objective, the methodology proposed in
this paper and consequential performance outcomes differ
substantially from this prior work.

Rivaz et al. [6] develop a method to register ultrasound and
MRI images using Contextual Conditioned Mutual Informa-
tion which conditions Mutual Information (MI) estimation
on similar structures. Parmehr et al. [[7] employ combined
MI to automatically register optical imagery with lidar data
by exploiting the geometric dependence and complementary
character of intensity data. The proposed approach differs
from these registration techniques in that future actions are
selected by maximizing the rate of information gain which
is an efficient strategy that enables real-time performance.

Early work by Stachniss and Burgard [8] demonstrated an
approach for measuring the information gain at a specific
view-point in the environment using a ray-tracing technique
from Moravec and FElfes [9]. More recent work by Char-
row et al. [3]] addresses the question of how to efficiently
explore an unknown environment by selecting actions that
maximize the rate of information gain between a map and
sensor observations. Nelson and Michael [10] extend the
approach of Charrow et al. [3] by incorporating compression
techniques to increase the rate of exploration and reduce
computational complexity. Charrow et al. [11] demonstrate
an information-theoretic exploration technique that reduces
the time to explore an environment as compared to a frontier
exploration strategy. The proposed approach builds on these
active exploration approaches by extending the occupancy
grid mapping technique to multimodal sensors and by incor-
porating CMI to compute the information gain with respect
to multimodal sensors and maps.

The two contributions of this paper are the multimodal
occupancy grid formulation (Sect. and CMI to compute
the information gain given dependent multimodal sensors



(Sect. [I). Depth observations are integrated into the map
using the standard occupancy grid map update (Sect.
and thermal observations are integrated using a Kalman filter
based approach applied to each cell in the map (Sect. [[I-C).
To select actions that reduce the uncertainty in the map, a
large number of potential motion primitives are evaluated
each second and the one that maximizes the rate of infor-
mation gain is selected (Sect. [[lI-D)). The rate of information
gain is computed as the sum of the MI between the depth
sensor and map (Sect. and the CMI between the
multimodal sensors and maps (Sect. per unit time. The
approach is evaluated through simulation (Sect. [[V-A).

II. MULTIMODAL OCCUPANCY GRID MAPPING

This section details the measurement model for the thermal
and time-of-flight cameras, occupancy grid map formulation
for a single sensor, and an extension to multiple sensors.

A. Measurement Model

Time-of-flight cameras return distance to an object by
measuring the time required for a light signal to travel
between the camera and object [12]. Time-of-flight cameras
are reliable up to a certain distance, after which point the
accuracy of the returned range measurement degrades signif-
icantly. Thermal cameras are sensors that convert temperature
readings into a thermal image [13]. Similar to the time-
of-flight camera, the temperature readings degrade as the
distance from the camera to object increases.

At time ¢ the robot receives an image where each pixel
represents a distance or temperature value for the time-
of-flight or thermal camera, respectively. The robot’s state,
transform between the body frame and sensor frame, and
intrinsic parameters for the sensors are assumed to be known.
Given this information, a pixel in the sensor plane can be
projected into the 3D world as a beam. An image can be
converted into a vector of beam measurements, Z;. Given a
set of cells, a beam, z returns the distance to the first occupied
cell, d, perturbed by Gaussian noise, p(z|d) = N (z — d, 0?)
or a temperature detected at the first occupied cell, for the
depth or thermal camera, respectively.

B. Occupancy Grid Mapping

An occupancy grid map computes the posterior over a map
given sensor measurements p(0|21.¢, £1.¢), where o is the map
cell, zy1.; is the set of measurements, and x1.; is the set of
poses of the robot up to time ¢ [14]. The occupancy grid
map represents the robot’s environment as discrete 2D slices
layered one on top of the other to represent the 3D world.
Each slice consists of cells with a specified resolution. Each
cell is modeled as an independent, binary random variable
which denotes the presence, p(0) = 1, or absence, p(0) = 0,
of obstacles within the cell.

Unobserved cells are initialized with a uniform prior of
p(o|z1.4,214) = 0.5 and updated using the log-odds repre-
sentation of occupancy:
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Occupancy values are updated using the inverse sensor model
as

ly = l;—1 + inverse_sensor_model(o, x¢, z:) — lp  (3)

where [y is the occupancy prior represented as a log-odds
ratio [14]].

C. Extension to Multiple Sensing Modalities

The traditional occupancy grid map formulates the con-
tents of the cell as {p(0)}. To extend the occupancy grid
map to contain temperature information, we formulate the
contents of the map cell to be {p(0),c2,, 3}, where p(o)
is the occupancy probability, o2, is the variance of the
temperature cell, and s is the filtered temperature cell value.
Each cell employs a likelhood model to update the values of s
and o2,. The variance of the temperature cell o2, decreases
as sensor measurements are accumulated. § represents the
filtered temperature of the occupancy grid map cell and is
initialized by setting it to the first temperature observed by the
thermal camera. An update occurs every time a new sensor

observation is obtained according to
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Equations @) - (6) are the Kalman filter update equations
with §; corresponding to the updated temperature value, s;
the temperature sensor observation at time ¢, g the gain, ag
the process noise (set to zero assuming a stationary model),

and o2 is computed based on the occupancy likelihood.

ITII. ACTIVE PERCEPTION WITH
CONDITIONAL MUTUAL INFORMATION

This section describes how to compute the MI between
the depth sensor and spatial map and the CMI between the
multimodal map and sensor. Approaches to generate actions
and compute the rate of information gain for a set of actions
are also presented.

A. Mutual Information
Cover and Thomas [15] define the MI as the reduction in
uncertainty of X due to the knowledge of Y,
I(X;Y)=HX)+HY)-H(X,Y)
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H(X) denotes the entropy of random variable X. In this
work, the approach from Charrow et al. [3] is employed to
compute the MI between the depth camera and spatial map.
Cauchy-Schwarz Quadratic Mutual Information (CSQMI)
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between the map and the robot’s future measurements is
defined as
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where o denotes an occupancy cell in the spatial map O, and
z denotes a single sensor beam from a sensor observation Z;
taken at time ¢. Map cells not intersected by a beam have
no effect on the calculation of mutual information and are
ignored. Likewise, cells behind the first occupied beam are
ignored.

B. Conditional Mutual Information

Lizier [16] defines CMI as conditioning that removes
redundant information in Y and Z about X, but adds
synergistic information which can only be decoded with
knowledge of both Y and Z,

I(X;Y[2)= > > ) pla,ylz)p(z) log

TEQL YCy zEQ,

p(z,ylz)
p(x|2)p(y, 2)

oy, «, o, are an alphabet of possible outcomes for
z,y, and z, respectively.

The occupancy grid mapping formulation can be extended
to include image sensors such as thermal cameras provided
temperature data is associated with a depth observation either
by: (1) projecting a depth pointcloud from the time-of-flight
sensor frame into the thermal camera reference frame and
associating the 3D point with a temperature value, or (2)
projecting the thermal camera beam to its maximum range
and checking for intersections with occupied voxels. The
former occurs when the depth perception field overlaps with
the thermal camera perception field. The latter occurs when
beams from the thermal camera’s perception field intersect
voxels known to be occupied at time ¢ due to depth obser-
vations up to time ¢ — 1. Let m € M denote a temperature
cell in the thermal map M, o denote an occupancy cell in

Fig. L A dictio-
nary of three motion prim-
itives in 2D. [(b)] A graph
of depth three constructed
from Fig. [Ta A 3D
graph constructed from a
dictionary (not shown) of
ten motion primitives. @
The graph from Fig. [Id] af-
ter pruning sub-optimal and
redundant edges to decrease
the number of primitives to
search over during explo-
ration.
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the spatial map O, and z denote a single sensor beam from
a sensor observation Z; taken at time ¢ from both sensors.

The CMI is computed as two cases between the temper-
ature and occupancy maps given the sensor observations as
well as between the temperature map and sensor observations
given the occupancy map. Case 1: the temperature value
in the map is updated using an updated occupancy value
as I(m;o|z). Case 2: the temperature value in the map is
updated using the existing occupancy value I(m;z|o). The
following paragraphs describe how to compute I(m;o|z) and
I(m; zlo).

In this work, a temperature value must be correlated to
depth either by association with a depth sensor beam or oc-
cupied voxel, and updating temperature requires knowledge
of the occupancy state of the cell. Following the MI beam
model by Julian et al. [17], if a beam hits a cell for the first
time with a range that is less than the maximum range of
both the depth and temperature sensors, both the occupancy
state and temperature state of the voxel are updated. The
occupancy state is updated according to Eqns. (1) — (Z) and
the temperature state according to Eqns. @) — (6).

The CMI I(m;o|z) can be computed between a thermal
cell m, occupancy cell o, and sensor beam z as

I(m;ol2) = p(2)p(m, o|z) log (zm) @
plodz) = 5o +p(0t1(;of(gg;;zotl) -1 ©
plmlz) = o3, 44 (1 - o2 j%itilp(otl))) ®
p(me, o]z) =

p(me|2)p(o2)

where ¢ — 1 denotes the previous value in the cell and ¢ is
the updated value. 6, is the occupancy value of the inverse
sensor model. p(z) is 1. Equation ([7) is derived directly from
the conditional mutual information formulation. Equations
@) - (10) are derived from the log odds update. Equation
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(TO) models how the probabilities in the thermal map are
updated when the beam collides with a spatial and thermal
cell simultaneously. I(m; z|o) is computed similarly:

I(m; z|o) = p(m, z,0) log (W) an
1
Pz, 0p_1) = L= Pml2) )
O—m,tfl

p(melog—1) = Urzn,t_1 (13)

The information gain is computed between the spatial and
thermal maps and the sensor observation from the combined
thermal and depth cameras as

1(0; Z,) + 1(M; Z,|0) + 1(M; 0| Zy)
= / Z Z I(0;2) + I(m; z|o) + I(m; 0|z)
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over all map cells and sensor observations.

In practice, the MI component [(O;Z;) will dominate
in completely unknown regions as the information gain
for the combination of free and occupied cells will likely
outweigh the contribution from the CMI. As the field of
views of multiple sensors do not always overlap, in partially
explored regions we expect actions that decrease thermal map
uncertainty (in contrast to single-sensor exploration methods
such as those detailed in [3] 4])).

C. Action Generation

Actions are generated using the approaches from [18]
which pre-compute optimal trajectories from one
state to another in a state-space lattice. The state-space
lattice is composed of discrete states that specify position,
velocity, and acceleration. The feasible trajectories, or motion
primitives, begin at one state (which specifies initial endpoint
constraints) and end at another state (which specifies final
endpoint constraints) serving as a bridge between states in the
state-space lattice. A visualization of the motion primitives
and the state space lattices in 2D and 3D is shown in Fig. [T}
The state-space lattice is formulated in the body frame to

(€]

Fig. 2: The meshed simulation en-
vironment and the simulation envi-
ronment with temperature overlaid. Red
colors are hotter and white discoloration
is an artefact of the meshing process
where no color information exists. [(¢)| The
robot in the environment with the time-of-
flight data shown in blue and the thermal
data in red. [(d)] A close-up view of what
is shown in Fig. A person exists
at the location where the time-of-flight
data intersects the mesh as depicted in:
color; [(T)] the simulation environment;
[(2)] the depth camera pointcloud overlaid
according to distance from the robot; and
[(})] the simulated thermal image of the
person where blue is a lower temperature

and yellow is a higher temperature.
()

enable motion primitive concatenation that results in a graph
with nodes and edges representing states and the cost of
executing the motion primitive (i.e., time or energy). The size
of the graph can be reduced using Dijkstra’s single source
shortest path algorithm to produce time-optimal or energy-
optimal trajctories from one state to another [18].

D. Multimodal, Information-Theoretic Exploration

We approach the problem of exploration as the computa-
tion of possible actions, evaluation of the information gain,
and selection of the trajectory that maximizes the rate of
information gain per unit time using the following equation:

1(0;Z,) + 1(M; Z,|0) + 1(M; 0| Zy)
D(uy)

max
Ut

s.t. Uy € Ureasible

where Ugeasible 1S the set of valid motion primitives and D(u;)
is the expected time or energy it takes to execute the controls.

IV. ANALYSIS
A. Experiment Design and Implementation Details

To evaluate the performance of the algorithm, thermal and
time-of-flight camera data are simulated in an environment
meshed from lidar point clouds and temperature data from
the Robotics 3D Scan Repository [21]. The mesh embeds
occupied space as triangles, and represents temperature as
color in degrees centigrade in the red channel. The time-of-
flight camera simulator raycasts a beam into the environment
and checks for collisions with the mesh. If a collision is
detected the first collision up to some max range is returned.
The thermal camera simulator also raycasts a beam into the
environment and checks for collisions but instead of returning
the distance to the first collision, it transforms the point of
collision from the 3D world frame to the image plane and
assigns the pixel value the temperature stored in the mesh.

The exploration framework updates the occupancy state
of the map when it receives a new depth point cloud in
the camera frame and converts it into the world frame.
The thermal map is updated when a new thermal image



105 Entropy Reduction over Time for Spatial Map

0 ‘ <10 Entropy Reduction over Time for Thermal Map

12 .

10 |-

©
T

Entropy Reduction (bits)
Entropy Reduction (bits)
>

2 average CMI+MI P average CMI+MI
[ average MI+MI | e average MI+Ml|
average Ml 2| average MI 4
CMI+MI : CMI+MI
S o PO MI+MI 1 : Mi+MI
,,,,,, Ml Mi

N . . . . ’
0 100 200 300 400 500 600 700
Time (s)

(a) (b)

: . . . L L
0 100 200 300 400 500 600 700
Time (s)

Fig. 3: The plots display the information gained over time for the spatial and thermal maps. The blue line labeled MI represents the
approach that only considers the MI between the time-of-flight camera and the spatial map. The red line labeled CMI+MI represents the
results for the proposed approach. The black line labeled MI+MI represents the naive approach that computes the mutual information
between the depth camera and spatial map and adds it to the mutual information between the thermal camera and thermal map. The
dotted lines are individual runs and the bold line is the average over all 10 runs. (&) The MI approach mildly outperforms the CMI+MI
and MI+MI approaches to reduce the uncertainty in the spatial map. (IE[) The CMI+MI approach notably outperforms the MI and MI+MI
approaches to reduce the uncertainty in the thermal map.
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Fig. 4: @) Environment mesh model. (@) Mesh with the output from a baseline MI approach run overlaid in blue. Mesh with the
output from the MI+MI approach overlaid in black. (d) Mesh with the output from the CMI+MI approach overlaid in red. (€) Overlay

highlights better performance by the CMI+MI based approach for thermal mapping.

is received, the associated depth point cloud is transformed
into the thermal camera reference frame, and the overlapping
points and non-overlapping thermal-only beams are projected
into the 3D world frame. Both the thermal and time-of-flight
camera produces observations at 5 Hz. All simulations run
in real-time given a dynamically accurate simulator of an
aerial vehicle [18]]. Motion of the robot is constrained from
0.33 - 3.0 m in the z-direction. The state space lattice and
sensor model parameters used in the simulations are listed in
Tables [I| and [II] respectively.

Three approaches are compared in simulation: (MI) the
state-of-art approach that computes the MI between the
depth camera and spatial map; (MI+MI) a naive spatial MI
and thermal MI strategy that treats the thermal and depth
observations as independent; and (CMI+MI) the proposed
approach which is the sum of the MI between the depth
camera and spatial map and the CMI between the multimodal
sensors and maps. For the naive MI+MI approach, we use
the approach from Charrow et al. [3] to compute the mutual
information between the thermal camera and thermal map
but only update the first occupied cell within the maximum

range of the thermal sensor.

B. Results

Tests comparing the efficacy of the proposed CMI+MI
technique are shown in Figs. [3] and 4] For all of the experi-
ments, results are shown for 10 minutes of exploration. Given
enough time, all approaches will completely map the contents
of the room, but in real-world scenarios (and especially in
disaster response scenarios), there is finite time and energy
for finding victims. The room is not fully mapped as the
motion of the vehicle was limited to a range in the z-
direction. The sensor field of view limits mapping of the
room floor.

Figure [3a] shows results of entropy reduction for the spatial
map over time. The MI (blue line) approach mildly outper-
forms the MI+MI (black line) approach and the CMI+MI
(red line) approach, which is expected as the MI formulation
favors reduction of the spatial map uncertainty whereas
the CMI+MI and MI+MI approaches balance reducing the
uncertainty in the spatial and thermal maps. At the start
of the simulation, the environment is completely unknown.



The contribution of the MI between the depth sensor and
map is significantly higher than the other contributions as
it computes the mutual information along the entire beam
whereas the CMI contribution and thermal MI contributions
consider only the end of the beam. Therefore, in a totally
unknown environment, the robot will maximize the rate of
information gain by selecting actions that favor reducing the
uncertainty of both free and occupied cells in the spatial map
for all approaches. As time progresses, the environment is
partially explored, so the contribution from the MI between
the depth camera and spatial map decreases and the MI+MI
and CMI+MI approaches begin to favor actions that reduce
the uncertainty in the thermal map. As a result, the MI mildly
outperforms the MI+MI and CMI+MI approaches in Fig. [3a]

Figure [3b| presents the results of reduction in uncertainty
for the thermal map over time. We find that the proposed
CMI+MI approach outperforms the MI and MI+MI ap-
proaches as expected as it seeks to reduce the uncertainty
in the thermal map while considering contributions from
the depth map. The MI approach does not consider thermal
information when selecting actions to decrease uncertainty
about the environment. The MI+MI approach performs better
than the MI approach after a few minutes but does not outper-
form the CMI+MI approach because it does not consider the
contribution of the depth information other than to consider
whether a cell is occupied when updating the thermal map.

TABLE I: State-Space Lattice Parameterization

start end A start  end A
X (m) 0 075 075 |[ ¢ (rad) = I z
y@m) | -075 075 075 || |Jv]| (m/s) 0 025 025
z(m) | -075 075 075 || |lall,2 %,¢,4 | 0 0 -

TABLE 1II: Simulated TOF and Thermal Sensor Parameters

Sensor x,y fov X,y size (pixels) range (m)

TOF 69.0°,53.0° 80 x 64 [0.04,5.0]

Thermal 43.6°,34.6° 40x 30 [0.04,2.5]
xyz offset (m) rpy offset (rad)

TOF (0.14, 0.1, 0.04) ~ (-1.57, 0.0, -1.57)

Thermal | (0.14, -0.1, 0.04)  (-1.57, 0.0, -1.57)

V. CONCLUSION AND FUTURE WORK

An autonomous exploration and multimodal mapping
framework is developed that extends the occupancy grid map
formulation to incorporate conditionally dependent sensor
observations from multiple sensors and maximizes the rate
of information gain as the sum of the MI and CMI between
the multimodal map and sensor. The approach is validated
through real-time simulations with results that show a notable
reduction in the thermal map uncertainty with respect to
time as compared to the naive or state-of-art approaches. The
approach only mildly underperforms in decreasing the spatial
map uncertainty with respect to time compared to the state-
of-art approach.
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