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Abstract We present a multirotor architecture capable of aggressive autonomous
flight and collision-free teleoperation in unstructured, GPS-denied environments.
The proposed system enables aggressive and safe autonomous flight around clutter
by integrating recent advancements in visual-inertial state estimation and teleoper-
ation. Our teleoperation framework maps user inputs onto smooth and dynamically
feasible motion primitives. Collision-free trajectories are ensured by querying a lo-
cally consistent map that is incrementally constructed from forward-facing depth
observations. Our system enables a non-expert operator to safely navigate a multi-
rotor around obstacles at speeds of 10m/s. We achieve autonomous flights at speeds
exceeding 12 m/s and accelerations exceeding 12 m/s2 in a series of outdoor field
experiments that validate our approach.

1 Introduction
Autonomous aerial vehicles with onboard vision-based sensing and planning have
been shown to be capable of performing fast and agile maneuvers. However, long-
horizon planning required to achieve a task has proven to be a challenge, particularly
with limited onboard compute. We propose a fully integrated vision-based mul-
tirotor platform that allows minimally trained operators to teleoperate the vehicle
at high speeds with agility, while remaining safe around obstacles in unstructured
outdoor environments. At high speeds, the environment around the vehicle changes
quickly, and is subject to dynamic obstacles and lighting conditions. Our multirotor
architecture integrates the following to achieve agile and collision-free flight in these
scenarios: 1) an extension of motion primitive-based teleoperation [12] to generate
jerk-continuous local trajectories, a crucial component to prevent instability in ag-
ile flights, and 2) efficient local mapping for collision avoidance purposes using a
KD-tree.

Many prior works in high speed flight exploit the field-of-view (FOV) of stereo
cameras for fast collision checking for autonomous flights, including [4, 5], where
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trajectories are constrained to be inside the FOV of the depth sensor with a max range
of 10 m. In [8], trajectories generated by RRT∗ are checked for collisions directly
in the disparity space. Lopez and How [7] presents aggressive flight on a 1.2 kg
MAV, achieving a velocity of 3 m/s. These methods achieve fast collision checking
by circumventing the need to construct a local map and checking for collisions in
the sensor’s FOV. This however, limits the range of motions the vehicle can perform.
Approaches with local map generation using a laser range finder [1] and a monocular
RGB camera [3] have been shown to achieve maximum velocities of 1.8 m/s and
1.5 m/s respectively, but data processing limits the update rate of the local maps.
In our approach, we give a minimally trained operator full control of the vehicle
and show that fast and agile flights can be achieved with a human-in-the-loop while
maintaining safety.

We perform a series of high speed collision avoidance trials in both indoor and
outdoor environments with untrained operators. In our experiments, our hexarotor
attains speeds exceeding 12 m/s and accelerations exceeding 12 m/s2. We are able
to safely avoid obstacles at speeds up to 10 m/s and accelerations of 8 m/s2, while
retaining a local map.

2 Technical Approach
2.1 Smooth Motion Primitive-Based Teleoperation
Aggressive multirotor flights demand large angular velocities and large angular
accelerations, which are directly related to the jerk and snap of the reference position
[9]. Thus to avoid incurring large tracking error due to discontinuous trajectories,
we extend forward-arc motion primitives [12] to generate trajectories that retain
differentiability up to jerk and continuity up to snap. From the resulting trajectories,
we can calculate desired vehicle attitude, angular velocity, and angular acceleration
for use as feedforward terms in the controller.

The motion primitives are parameterized as follows. We define a local frame
L to be a fixed z-axis aligned frame, taken at a snapshot in time. The motion
primitive definition will be provided in the local frame at the time at which an input
is issued, and can be freely transformed into a fixed global frame or body frame
for control purposes. An action a specified by a continuous external input, such
as a joystick, generates a single motion primitive. For a multirotor, we define an
action as a = {vx, vz, ω} in the local frame at which the input is issued, where
vx is the x-velocity (i.e., the forward velocity of the vehicle), vz is the z-velocity,
and ω is the yaw rate. Let x denote a vector containing the position and yaw of
the vehicle, i.e. x = [x, y, z, θ]. Then, the endpoint velocities are defined by
the unicycle model [10]. The unicycle model dynamics are given by ẋ(a, τ) =
[vx cos(ωτ) vx sin(ωτ) vz ω]>, where τ ∈ [0, T ]. The position endpoints are
unconstrained and we enforce all higher order derivatives above velocity to be zero.

A regeneration step k occurs when a new input is received from the joystick, or
the previous trajectory γ(ak−1, T ) finishes executing. Alternatively, a fixed regen-
eration rate can be chosen in order to accommodate changes in the environment for
collision avoidance. Suppose regeneration step k occurs at time tk. Then, a library of
dynamically feasible motion primitives is generated in the local frame Ltk specified
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by the reference state at time tk, i.e. xref(tk) = γ(ak−1, tk − tk−1), given a set of
discretized actions ak. Each motion primitive γ is a vector of four 8th order poly-
nomials that specify the trajectory along the position coordinates x, y, z and yaw
coordinate θ. Given an action ak at regeneration step k, each motion in the motion
primitive library is generated in frame Ltk according to

γ(ak, τ) =

8∑
i=0

ciτ
i (1)

s.t. γ(j)(ak, 0) = x
(j)
ref (tk) for j = 0, 1, 2, 3, 4

γ̇(ak, T ) = ẋ(ak, T )

γ(j)(ak, T ) = 0 for j = 2, 3, 4

where {·}(j) specifies the jth time derivative. Note that all constraints are appropri-
ately transformed into Ltk . The duration of the trajectory T and the maximum x,
z, and yaw velocities are specified according to the desired operational range. We
further allow the operator to freely rotate the motion primitive library with respect
to Ltk ’s z-axis to allow for sideway slalom motions.

The result of having snap-continuous trajectories (see Fig. 1) ensures that we have
smoothness in error dynamics, thus minimizing instabilities and tracking error.

(a) (b)
Fig. 1: (a) A trajectory composed of 3-segments of motion primitives that switches to a new
motion primitive at arbitrary points along the trajectory that have non-zero higher-order-derivative
terms. The discarded trajectory is shown in dotted lines. (b) Higher-order time derivatives (velocity,
acceleration, jerk, and snap) of the three segment trajectory, showing that the trajectories are
differentiable up to jerk and continuous in snap at the switching points. At the end of the trajectory,
all higher order derivatives are zero except for the user specified velocity.

2.2 Pruning & Trajectory Selection.
At every time step, a family of motion primitives, called the motion primitive library,
is created. The motion primitive library is constructed by discretizing the continuous
input along each action dimension, such that each action ai ∈ A is selected from a
convex set A := {a ∈ [amin,amax]} with size N1 ×N2 × · · · ×Nn where Ni is the
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(a) (b)
Fig. 2: Motion primitive library with (a) variation in linear velocity and with (b) variation in z
velocity

dimension of the space of each input. An example of the discretization is shown in
Fig. 2.

At every time step, the operator input is mapped to the closest input in the action
space, as defined by the Euclidean norm. A priority queue that minimizes input
distance from the selected input ajoystick to each input in the action space ai ∈ A
is used to iterate through the action space until a feasible, collision-free trajectory
is found. This results in having the operator input mapped to the feasible motion
primitive in the library that is parameterized by the closest discretized action, i.e.
γ(ai) = argmin ‖ajoystick − ai‖. A trajectory is deemed collision-free if the mini-
mum distance between any point along the trajectory and the surrounding environ-
ment is above the sum of the vehicle size and an operator specified collision radius.
Algorithm 1 describes teleoperation with reactive collision avoidance in detail.

The effect of this pruning algorithm is that the vehicle exhibits natural behavior
in the presence of obstacles. If a pillar is in front of the vehicle, then the vehicle
chooses a motion primitive some angle away and avoids the obstacle. If a wall is
present, then the vehicle will choose linear velocities that gradually decrease until
the vehicle is stopped.

2.3 Local Map Representation using KD-Trees
We present a local mapping framework that generates a spatially consistent local map
of the robot surroundings represented as voxel grids. The local map is generated by
retaining only the depth sensor measurements obtained at poses that lie in the vicinity
of the vehicle’s current pose. This enables trajectories to span in the space observed
by all of the retained sensor measurements. Sequential sensor measurements ob-
tained using a stereo imaging sensor often contain redundant information about the
surroundings of the robot. The novelty of information in an incoming sensor mea-
surement at the resolution of the voxel grids is dictated by the rotation and translation
displacement of the robot between the current frame and the previous frames. To
enforce spatial locality, we dynamically select anchor frames and transform subse-
quent sensor measurements that contain novel information about the surroundings
in to the anchor frames. In order to efficiently incorporate only novel information
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Algorithm 1 Snap-continuous Motion Primitives based Teleoperation and Collision
Checking with KD-Tree Local Map
1: Given KD-Tree local map L, collision radius r, vehicle radius rv
2: Receive input ajoystick
3: Generate the minimum input distance queue according to di =

∥∥ajoystick − ai

∥∥
4: while ai is infeasible do
5: Pop the top action element off of the minimum input distance queue ai

6: Generate γi = γ(ai) according to (1)
7: for τ = 0 : T discretized at some4t do
8: Query L for the closest point p to γi(a, τ)
9: if ‖p− γi(a, τ)‖ ≥ r + rv then
10: Set ai to feasible
11: Set γ = γi
12: end if
13: end for
14: end while

in the local map, we classify each incoming sensor measurement into one of the
following categories: a KeyFrame (KF), a SubFrame (SF), or a BufferFrame (BF)
(see Table 1). The local map (L) is updated in a locally consistent coordinate frame
according to the type of sensor frame (F ∈ {KF, SF, BF}).

A sensor measurement that is more than αk meters away from the current KF is
classified as a KF. Sensor measurements that are not new KFs, but are either more
than αs meters in position or βs degrees in heading away from the previous SF, are
classified as SFs. Sensor measurements that are neither KFs nor SFs are classified as
BFs, which do not contain sufficient novel information about the surroundings, but
are registered to L to account for dynamic changes in the scene. BFs are in L only
for the iterations in which they are observed.

Table 1: Frame Classification
Frame Type Definition Initialization Condition for Frame F

KF Sensor frames to which subsequent T (KFi−1 ,F ) > αk

(Anchor) SFs and BFs are registered
SF Sensor frames that provide novel information T (SFi−1 ,F ) > αs||

about the vehicle surroundings H (SFi−1 ,F ) > βs
Sensor frames that are registered for one time

BF step to accommodate the dynamic changes F 6= (KF ,SF )

in the surroundings when the vehicle has
not been displaced by a sufficient distance

T (a, b) is the translational distance between a and b; H (a, b) is the heading rotational distance
between a and b.

A new local map L is spawned every time a new KF is detected. L consists of
all the SFs registered to the current KF, the current BF and all the SFs registered
to the previous KF, resulting in a voxel grid map representing the occupied space
centered around the vehicle. This allows us to only update the KD-Tree that contains
the voxel centers of the KF to which the incoming sensor scan is registered. Because
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a high fidelity map is not essential for collision avoidance, each sensor measurement
is downsampled into an occupancy grid with a fixed voxel size before registering it
to L. Voxel centers in the map are then arranged in a KD-Tree to minimize the time
complexity of nearest neighbor queries.

The algorithmic efficiency and independence of the definition of the local map
from the sensor model enables our approach to incorporate measurements from
multiple depth sensors with widely separate FOVs.

2.4 State Estimation
We use VINS-Mono [11], a tightly-coupled visual-inertial odometry framework
that has been shown to perform favorably when compared to other state of the art
open source state estimation algorithms [2]. VINS-Mono jointly optimizes vehicle
motion, feature locations, camera-IMU extrinsics, and IMU biases over a sliding
window of monocular images and preintegrated IMU measurements. Because our
local planning strategy does not require a globally consistent map, we disable the
loop closure functionality of VINS-Mono to reduce its computational footprint.
We run an auxiliary state estimator during takeoff in order to provide smooth state
estimates when the vehicle has not yet experienced sufficient motion excitation for
VINS-Mono to initialize. The auxiliary state estimator is an unscented Kalman filter
that fuses downward rangefinder altitude observations, downward optical flow, and
IMU measurements to estimate vehicle velocity, position, and attitude.

3 Implementation
Hardware. We experimentally evaluate our proposed approach on a 3.8 kg hexarotor
that fits within a 20 cm × 60 cm × 80 cm volume (Fig. 3a). The hexarotor has an
average flight time of 7 min and a power to weight ratio of 3. Two Intel RealSense
D435 depth cameras are used for mapping: one facing forwards and one facing
upwards at a 45 degree angle, which aids obstacle avoidance while accelerating
forwards. A downward facing Matrix Vision mvBlueFOX-MLC200w is used as the
RGB camera input for VINS-Mono and the NVIDIA Tegra TX2 is used for compu-
tation. The hexarotor uses a cascaded PD control architecture as in [9] with jerk and
snap references used to compute feedforward angular velocities and accelerations.

Teleoperation. Motion primitives are generated with an angular velocity bound
of 2 rad/s. There are 25 discretizations for the vx action, 11 for ω, and 5 for vz for
a total of 1375 motion primitives generated per trajectory iteration. Trajectories are
generated at 25 Hz, and the local map is updated at 30 Hz.

We follow [6] and choose the maximum velocity of the motion primitives to
be such that the vehicle can always safely stop given a known constant maximum
acceleration, known sensor range and known sensor and mapping rates. Since our
vehicle has a power to weight ratio of 3, we assume a conservative maximum
acceleration at 6 m/s2, and assume a worst case sensor and mapping rate of 10
Hz. With a sensor range of 10 meters, this allows for a maximum motion primitive
velocity of 10.37 m/s.
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(a) (b) (c)
Fig. 3: (a) The hexarotor vehicle used for aggressive flights in (b) outdoor environments and (c) a
dimly lit garage. The overlays of the vehicle positions over time depict the trajectories the vehicle
took to avoid pillars in its way.

4 Experiments and Results
4.1 Experiments in Aggressive High Speed Flights
We conduct seven aggressive flight experiments in order to test our framework,
including four outdoor experiments over an area of 40 m× 20 mwith obstacles over
grass (Fig. 3b), and two indoor experiments in a dimly lit garage (Fig. 3c). The
experiments are described in Table 2. The local map used for all experiments uses
αk = 2 m, αs = 0.2 m, βs = 0.1 rad and a voxel size of 0.2 m.

Table 2: Experiment descriptions and parameters.
Experiment Description T (s)vmax

x (m/s)ωmax (rad/s) r (m)
Outdoor-1 High speed teleoperation outside 2.2 12.0 2.0 N/A

Outdoor-2,3Aggressive teleoperation withcollision avoidance outside 2.0 5.0 1.0 0.8

Indoor-1,2 Aggressive teleoperation with
collision avoidance in a dimly lit garage 1.5 3.0 1.5 0.4

Outdoor-4 High speed, aggressive teleoperation
with collision avoidance outside 1.3∗ 7.0 2.0 0.5

Outdoor-5 High speed, aggressive teleoperation
with collision avoidance outside 1.5∗ 10.0 2.0 0.2

T denotes the duration of the motion primitive, vmax
x is the maximum desired speed,

ωmax is the maximum yaw rate, and r is the collision radius.
∗Motion primitive duration increased adaptively as a linear function of the desired velocity change

High Speed Flight. In Outdoor-1, we execute straight line trajectories that hit a
maximum desired speed of 12m/s using the teleoperation system. Figure 4 shows the
speed and acceleration attained during three runs. The vehicle achieves a maximum
acceleration of 13.5 m/s2.

High Speed and Aggressive Flight with Collision Avoidance. Experiments
Outdoor-2-5, and Indoor-1,2 stress test our collision avoidance algorithm at high
speeds while maintaining aggressiveness in the commanded trajectories. In both
environments, the operator repeatedly tries to fly the vehicle at the maximum speed,
as indicated in Table 2, into an obstacle. Figure 6 shows the speeds and accelerations
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Fig. 4: Desired (dashed blue) vs. estimated (solid red) speed and acceleration achieved during high
speed flight in experiment Outdoor-1. A maximum acceleration of 13.5 m/s2 was attained.

attained during the six experiments. The vehicle successfully reaches speeds of 10
m/s and accelerations of 8 m/s2 in the outdoor environment and speeds of 3 m/s
and accelerations of 5 m/s2 in the indoor environment. Figure 6 also shows regions
where the operator’s selected trajectory would bring the vehicle closer than r meters
to an obstacle. In all such cases, the operator’s trajectory is pruned and a collision-
free trajectory is selected. Figure 5 shows an example instance of motion primitive
pruning to avoid a collision, along with the local map generated by the vehicle.

Computational Performance Analysis. Table 3 shows that our trajectory gener-
ation and pruning time is faster than the user input rate (10 Hz) and that our map
generation time is faster than the sensor input rate (30 Hz), enabling real time op-
eration. Furthermore, Table 4 indicates that the in-flight computational footprint of
the proposed system is less than 75% of the available onboard capacity.

Fig. 5: A snapshot of the map and motion primitive library during an indoor experiment when the
user selected trajectory (yellow) is not chosen to avoid a collision.
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Fig. 6: Desired (dashed blue) vs. estimated (solid red) speed and acceleration achieved during
our six collision avoidance experiments. During orange regions, the operator’s trajectory was not
selected in order to keep aminimum distance to surrounding obstacles. The system accurately tracks
trajectory references and avoids obstacles while reaching speeds of up to 10 m/s, and accelerations
up to 8 m/s2.

Table 3: Execution time (ms) and std. dev. per iteration for safe teleoperation during some of our
experiments
ExperimentTrajectory GenerationTrajectory PruningLocal Map Generation
Outdoor-2 0.47± 0.072 29.37± 24.03 5.72± 5.54

Outdoor-3 0.48± 0.071 23.65± 15.42 5.84± 7.95

Indoor-1 0.50± 0.125 8.34± 5.19 11.67± 14.83
Indoor-2 0.51± 0.219 15.73± 7.23 12.71± 16.78
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Table 4: CPU usage (%, out of a total available 600%) and std. dev. on a 6 core NVIDIA TX2
ExperimentSafe Teleoperation VINS Mono Total
Outdoor-2 32.92± 17.59 67.45± 10.87395.72± 43.53

Outdoor-3 26.70± 19.98 56.19± 19.47359.89± 60.87
Indoor-1 57.38± 21.25 64.21± 3.42 450.40± 43.14

Indoor-2 58.76± 24.09 63.82± 6.41 456.47± 36.83

5 Conclusion and Future Work
In this work, we present a system architecture designed for collision-free, agile
autonomous flight through cluttered environments. Our hexarotor vehicle is capable
of flying at speeds exceeding 12 m/s and with accelerations exceeding 12 m/s2, as
shown in Outdoor-1. The teleoperation and collision avoidance system presented
has been shown to consistently avoid obstacles while traveling at speeds up to 10
m/s in an outdoor environment (Outdoor-5) and in a dimly lit garage (Indoor-1,
Indoor-2).

Although we’ve attained relatively high levels of performance, there are limita-
tions to the architecture. Currently, motion primitive durations are chosen by the
operator. If the motion primitive duration is set too low, the vehicle will not be able
to meet the desired acceleration and performance will suffer. Consequently, it is
difficult to attain high speeds while remaining responsive at low speeds. A natural
extension of the approach is to choose motion primitive durations in a principled
manner to ensure that generated references are dynamically feasible. We also believe
that chaining together motion primitives to generate more complex reference paths
is an exciting avenue for future work. This would enable the vehicle to execute more
complicated maneuvers, particularly in cluttered environments.
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