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Abstract In this work, we propose a methodology to

adapt a mobile robot’s environment model during ex-

ploration as a means of decreasing the computational

complexity associated with information metric evalua-

tion and consequently increasing the speed at which the

system is able to plan actions and travel through an

unknown region given finite computational resources. Re-

cent advances in exploration compute control actions by

optimizing information-theoretic metrics on the robot’s

map. These metrics are generally computationally ex-

pensive to evaluate, limiting the speed at which a robot

is able to explore. To reduce computational cost, we

propose keeping two representations of the environment:

one full resolution representation for planning and col-

lision checking, and another with a coarse resolution

for rapidly evaluating the informativeness of planned
actions. To generate the coarse representation, we em-

ploy the Principal of Relevant Information from rate

distortion theory to compress a robot’s occupancy grid

map. We then propose a method for selecting a coarse

representation that sacrifices a minimal amount of in-

formation about expected future sensor measurements

using the Information Bottleneck Method. We outline

an adaptive strategy that changes the robot’s environ-
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Fig. 1 A robot explores an environment by choosing the ac-
tion (yellow) that maximizes expected information gain (paths
with green endpoints are more informative than paths with
red endpoints). Expected information gain is computationally
expensive to calculate, so it is instead evaluated with respect
to a version of the robot’s map that is compressed adaptively
according to the structural complexity of the environment
(overlaid).

ment representation in response to its surroundings to

maximize the computational efficiency of exploration.

On computationally constrained systems, this reduction

in complexity enables planning over longer predictive

horizons, leading to faster navigation. We simulate and

experimentally evaluate mutual information based ex-

ploration through cluttered indoor environments with

exploration rates that adapt based on environment com-

plexity leading to an order-of-magnitude increase in

the maximum rate of exploration in contrast to non-

adaptive techniques given the same finite computational

resources.

Keywords Active Perception · Mobile Robot

Exploration · Sensor Based Planning · Mapping
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1 Introduction

Robots are emerging from controlled factories and labo-

ratories into our homes, workplaces, roads, and airspace.

Alongside their transition into these unstructured and

transient environments comes their need to be able to ex-

plore, characterizing and cataloging their surroundings

as they navigate. Recent robotic exploration methods
plan actions that reduce map uncertainty by optimiz-

ing information-theoretic metrics (Amigoni and Caglioti

2010; Bourgault et al 2002; Julian 2013; Julian et al

2013). While these techniques yield increased explo-

ration performance (Charrow et al 2015b) in contrast to

geometric techniques that reason about the locations of

unknown space in the map (Burgard et al 2000; Taylor

and Kriegman 1993; Yamauchi 1997; Yoder and Scherer

2015), information-based strategies are more computa-

tionally expensive.

In this article, we propose simplifying or compress-

ing a robot’s representation of its environment as a

means of reducing the computational burden associated

with evaluating information-theoretic metrics for active

perception planning. The resulting reduction in com-

putational cost allows an exploring robot to evaluate
more potential future actions in the same finite amount

of time, ultimately allowing it to plan and move more

quickly through its environment. Furthermore, we pro-

pose an adaptive strategy for determining an optimal

map representation to maximize exploration efficiency

while minimizing loss of information. The adaptive strat-

egy allows the robot to choose the best map represen-

tation based on the structural complexity of its local

environment, which could change as the robot navigates.

To implement these ideas, we give the robot access to

two representations of its own map: a full resolution

version that is used for collision checking during plan-

ning, and a coarse resolution version that is used to

efficiently approximate the informativeness of planned

actions (Fig. 1).

The proposed environment model compression strat-

egy leverages techniques from rate distortion theory and

signal processing for reducing a random variable to a

compressed form while minimizing distortion between

the original and reduced representations. Specifically,

we use the Information Bottleneck (IB) method (Tishby

et al 2000) to determine a representation for the environ-

ment that maximizes compression (therefore maximizing

computational efficiency) and minimizes loss of informa-

tion pertinent to active perception planning (keeping

exploration performance relatively unhindered). The

IB method is an optimization over possible map rep-

resentations; in order to generate a set of maps with

varying compressions, we apply the Principle of Rele-

vant Information (PRI) (Principe 2010). While both of

these methods are general and can be used for many

environment models, we demonstrate their application

to occupancy grid (OG) maps (Elfes 1989).

Many map compression strategies are proposed in

the literature. The OctoMap framework builds an oc-

tree data structure to efficiently store the expected oc-

cupancy of cells in an environment without allocating

memory for a large 3D grid (Wurm et al 2010). Im et al

(2010) compress an OG by representing it with wavelets

using the Haar wavelet transform. Kretzschmar and

Stachniss (2012) compress pose graph maps by exam-

ining the mutual information between the pose graph

and sensor measurements. Most related to the proposed

technique, Einhorn et al (2011) adaptively choose an

OG resolution for individual cells by determining which

cells are intersected by measurements. In contrast to

these works, we approach environment model compres-

sion as one of simultaneously reducing the distortion

between the map and its compressed form, and between

a compressed map and sensor measurements.

Information-based exploration methods generally

choose control actions that seek to maximize the in-

formativeness of future sensor observations, yielding

a reduction in map uncertainty computed via metrics

such as Shannon mutual information (SMI) (Amigoni

and Caglioti 2010; Bourgault et al 2002; Julian et al

2013) and Cauchy-Schwarz quadratic mutual informa-

tion (CSQMI) (Charrow et al 2015b). We consider

information-based strategies instead of geometric strate-

gies (such as frontier exploration) (Yamauchi 1997) be-

cause they are generally capable of faster exploration,

and do not lose effectiveness when extended to three di-

mensions (Shen et al 2012). Similar to the work of Char-

row et al (2015b), we choose to employ CSQMI due to
the favorable analytic properties and increased compu-

tational efficiency.

Our proposed approach highlights coupling between

planning and environment representation and takes ad-

vantage of this structure to achieve greatly improved

computational efficiency. Investigations at boundary of

these problem domains has produced some interesting

and related ideas including predicting the structure of

unobserved areas for exploration (Strom et al 2015),

and learning the likelihood that an action will cause a

collision, given a local map to enable high speed naviga-

tion (Richter et al 2014).

The organization of our presentation follows. We

first provide an overview of active perception, several

planning strategies for exploration, OG mapping, and

relevant ideas from information theory in Sect. 2. The

IB method and its application to environment model

adaptation is detailed in Sect. 3. The PRI compression
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method and an example of the PRI applied to OG com-

pression are discussed in Sect. 4. An approach for trigger-

ing new environment adaptations in response to the local

environment’s structure is detailed in Sect. 5. Simula-

tion and experimental evaluation of environment model

adaptation during exploration is provided in Sect. 6.

Although the IB and PRI methods for environment

model adaptation are described in Nelson et al. (Nel-

son and Michael 2015), this article provides a more

thorough and comprehensive presentation of the for-

mulations and their implementation throughout. The

main additions in this work are a detailed description of

active perception planning for mobile robot exploration

(Sect. 2), the introduction of OG pyramids for multi-

resolution environment model optimization (Sect. 4.3),

and considerations for applying the presented methods

to exploration in 3D environments (Sect. 6).

2 Active Perception Planning

In the following section we review methods for planning

paths into previously unexplored areas of a robot’s map

that are likely to result in highly informative sensor

measurements, given the robot’s current map, sensor

model, and dynamics model. These methods will be used

in subsequent sections to develop strategies for guiding

a robot to locations from which it can optimally reduce

uncertainty in its map, and for adapting the robot’s

map resolution in order to explore more efficiently.

2.1 Active Perception as an Optimization

In robotics and computer vision, the exercise of choos-

ing control actions that guide a system to locations

from which it can gather sensor measurements to learn

more about its environment or state is known as ac-

tive perception. In mobile robotics, one can consider

the robot system itself as a sensor that is able to move
and actuate for the purpose of collecting informative

measurements about the environment. From this per-

spective, the robot’s task is to choose and execute actions

that optimize the quality of its sensor measurements.

We define an action as a sequence of configurations,

xτττ , {xt+1, . . . ,xt+T }, that the robot will move to over

a future time interval τττ , {t+ 1, . . . , t+ T}. From con-

figurations xτττ , the robot will, in expectation, acquire

future sensor measurements zτττ , {zt+1, . . . , zt+T }. Fol-

lowing standard SLAM conventions (Thrun et al 2005),

zi = h(xi) + ηηηi, (1)

where h(·) is the robot’s nonlinear measurement equa-

tion and ηηηi ∼ N (0, Σi) is normally distributed zero-

mean measurement noise with covariance matrix Σi. In

this work we will primarily be concerned with ground

robots restricted to configurations that are elements of

SE(2) (the special Euclidean group of 2D transforma-

tions), and w.l.o.g. use xi to refer to a pose in 2D with

first-order dynamics: xi , (xi, yi, αi, ẋi, ẏi, α̇i)
T .

In the context of exploring an environment with

a mobile robot, the active perception problem can be

framed as an optimization over possible future actions

that the robot can take,

x∗τττ = argmax
xτττ∈Xτττ

J (m, zτττ ). (2)

Here, J is a reward function expressing the expected new

information learned by sequentially moving the robot

to configurations xτττ , collecting sensor measurements zτττ ,

and updating its map m. Xτττ is the set of all collision-free

and dynamically feasible actions that the robot can take

over the finite horizon τττ , given a deterministic dynamics

model f(·),

Xτττ = {xτττ |xi+1 = f(xi,ui) ∀xi ∈ xτττ}, (3)

where ui is a feasible control input. In addition to eval-

uating the expected pure information content added by

zτττ , J commonly incorporates time or energy expendi-

ture required to carry out the action xτττ .

Unfortunately, the active perception optimization

faces the curse of dimensionality; the size of Xτττ grows

exponentially with the length of the finite horizon. As τττ

increases in size, it therefore quickly becomes infeasible

to evaluate J over all possible actions. Furthermore,

the metric itself can have an expensive constant cost

per evaluation. To remain computationally tractable,

in many cases it is reasonable to generate a subset

of candidate actions Xτττ ⊂ Xτττ that are likely to be

informative prior to optimizing (2). If Xτττ is a continuous

space, it is likely that the active perception optimization

over Xτττ will not choose the most informative action.

Broadly speaking, the suboptimality of the solution

will depend on the size of Xτττ , and therefore will vary

inversely with computation time. This is an important

consideration, as Xτττ must be expressive enough for

exploration, yet must be small for efficiency.

2.2 Occupancy Grid Mapping

One primary consideration for active perception plan-

ning is the model with which the robot should repre-

sent its environment. The representation should: (1)

allow for fast queries and updates, (2) be expressive
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enough to allow collision-free trajectory planning, and

(3) include a notion of uncertainty. Several environment

model options exist, including OGs (Elfes 1989), NDT

maps (Saarinen et al 2013), Gaussian process maps (Kim

and Kim 2012a; T O’Callaghan and Ramos 2012), oc-

tree variations on OGs (Wurm et al 2010), and mixture

of Gaussian representations (Kim and Kim 2012b). We

opt to employ OGs as they satisfy all three criteria and

are simple to work with.

OGs decompose the robot’s workspace into a discrete

set of 2D or 3D cells with a specified resolution. The pres-

ence or absence of obstacles within these cells is modeled

as a K-tuple binary random variable m , {mi}Ki=1, with

each mi taking a value in {EMP, OCC}, where EMP refers to

free space and OCC refers to space occupied by an obsta-
cle. The probability that an individual cell is occupied

is given by oi , p(mi = OCC), and 1−oi = p(mi = EMP).

The OG representation treats cells as independent from

one another, allowing the joint occupancy probability
of a specific map to be expressed as the product of indi-

vidual cell occupancy probabilities: p(m) =
∏K
i=1 p(mi).

Upon initialization, unobserved grid cells are assigned

a uniform prior such that {oi = 1− oi = 0.5}Ki=1. This

convention implies that the robot is initially unaware of

its surroundings prior to accumulating sensor measure-

ments.

2.3 Cauchy-Schwarz Quadratic Mutual Information

In the exploration task, a robot should execute control

actions that minimize uncertainty in its belief distribu-

tion over the environment (map). The metric J must

therefore be chosen to capture the effect that sensor

measurements have on updates to the map; J should

be larger when zτττ contains information that does not

already exist in m.

There are many reasonable choices for such a metric.

One common choice is SMI (Cover and Thomas 2012;

Principe 2010), which is a symmetric binary function

used to describe the amount of information one of its

arguments contains about the other. The SMI, denoted

IS[X;Y ], between random variables X and Y can be

derived from the Kullback-Leibler (KL) divergence,

DKL(q || r) =

∫
q(x) log2

q(x)

r(x)
dx, (4)

by setting q ← p(X,Y ) and r ← p(X)p(Y ) (Cover and

Thomas 2012). KL divergence is one instance of a more

general spectrum of divergences, each of which gives

rise to a different mutual information metric (Principe

2010). One divergence measure of particular importance

is the Cauchy-Schwarz divergence, which is derived from

substituting two distributions, r and q, into the Cauchy-

Schwarz inequality,

DCS(q || r) = log2

∫
q2(x)dx

∫
r2(x)dx(∫

q(x)r(x)dx
)2 . (5)

Similar to the derivation of SMI from KL diver-

gence, setting q ← p(X,Y ) and r ← p(X)p(Y ) as the

arguments of CS divergence gives rise to the Cauchy-

Schwarz Quadratic Mutual Information (CSQMI). Like

SMI, CSQMI is non-negative, symmetric, and zero only

when its arguments are independent (i.e. p(X,Y ) =

p(X)p(Y )). Importantly for exploration, CSQMI can be

computed analytically, and is more efficient to compute

than SMI when using a beam-based sensor model on an

OG (Charrow et al 2015b). The fact that CSQMI can

be computed analytically is critical; SMI often cannot

be computed analytically and requires expensive numer-

ical approximations such as Monte Carlo sampling or

numerical integration proposed by Julian et al (2013) in
an analagous formulation. As a result, CSQMI can be

up to one order of magnitude faster to compute (Char-

row et al 2015b). Figure 2 shows that the CSQMI and

SMI between a beam-based measurement and an OG

produce similar values.

Given the benefits of CSQMI, it is a suitable choice

for the metric J in the active perception optimiza-

tion (2). The CSQMI between an OG map and a se-

quence of beam-based measurements, ICS[m; zτττ |xτττ ],

is

log2

∫ ∑
M p2(m, zτττ )dzτττ

∫ ∑
M p2(m)p2(zτττ )dzτττ(∫ ∑

M p(m)p(zτττ )p(m, zτττ )dzτττ
)2 , (6)

whereM is the set of all K-cell maps. In general, a map
can take one of |M| = 2K values. However, only areas

of intersection between beams in measurements zτττ and

grid cells in the map yield non-zero values. We follow

the method in Charrow (2015) for computing CSQMI

(which includes a derivation starting from Eq. (6) that

is too lengthy to include here, but results in an easy-to-

implement algorithmic form). This method computes

CSQMI to a close approximation in O(n) time, or ex-

actly in O(n2) time, where n is the number of grid cells

intersected by measurements in zτττ .

Substituting ICS[m; zτττ |xτττ ] for J (m, zτττ ) in (2) yields

an active perception optimization that guides a robot

toward unexplored locations by choosing control actions

that maximally reduce uncertainty in the map.

2.4 Receding Horizon Planning and Action Generation

The goal of action generation is to build a set Xτττ of

dynamically feasible actions, from which the robot can
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Fig. 2 Two variants of mutual information ((b): SMI; (c):
CSQMI) densely computed in free space over an occupancy
grid (a) using a 100-beam omnidirectional 2D LiDAR with
30 m range. An example sensor measurement is depicted in
(a). Controlling the robot towards locations that maximize
either variant of mutual information would attract the robot
to locations from which it could observe unknown areas of the
map.

Algorithm 1 ActivePerceptionPlanning(J (·, ·), m, τττ)

1: while MapIncomplete(m) do
2: Xτττ ← GenerateActions(m, τττ)
3: x∗

τττ ← ActivePerceptionOptimization(J (·, ·),Xτττ ,m)
4: repeat
5: Follow(x∗

τττ )
6: z← Sense()
7: x← Localize(m, z)
8: m← UpdateMap(m,x, z)
9: until ReplanTimerExpired()

execute the most informative. In this article we consider

the use of receding horizon control strategies, where
action generation is repeated during each planning it-

eration, and the robot only carries out a portion of

each action before replanning. This control strategy is

used because the robot’s map is continuously updated

with new sensor measurements, sometimes rendering

the current plan infeasible due to newly discovered colli-
sions with obstacles in the environment. The interaction

between algorithmic components is detailed in Alg. 1.

Several options exist for generating actions. An opti-

mization based method for efficiently identifying contin-

uous informative trajectories is proposed by Marchant

and Ramos (2014), which uses a Gaussian Process map

representation. Other recent works by Charrow et al

(2015a,b) and Vallvé and Andrade-Cetto (2014) suggest

seeding action generation by identifying frontiers (Ya-

mauchi 1997) in the map and evaluating J near frontier

locations. Once the most informative frontier is identi-

fied, actions can be planned towards that frontier using,

e.g., an RRT (LaValle 1998) or one of its many variants.

Because frontier identification is efficient, this two-pass

approach is useful for finding potentially informative

locations prior to performing the comparatively expen-

sive reward evaluation step. This strategy has the added

benefit that frontiers are computed globally across the

robot’s map, guaranteeing that the robot won’t become

trapped in a dead-end or a pose from which its local map

 

 

Level 0

Level 1

Level 2

(a) Motion primitive library. (b) Lattice graph.

Fig. 3 Two strategies for action generation: a primitive li-
brary with three levels, built from a dictionary of four motion
primitives (a), and an 11 × 11 × 1 lattice graph generated
by solving many BVPs from the robot’s initial state (middle,
facing right) to a lattice of final states (b).

is already fully explored. After planning global actions

towards frontiers, an optional optimization step can be

applied to increase expected information gain along the

path (Charrow et al 2015a; Kollar and Roy 2008). More

thorough surveys of frontier exploration algorithms and

heuristics are provided by Basilico et al. (Basilico and

Amigoni 2008) and Holz et al. (Holz et al 2011). One

unfortunate downside of frontier exploration is that the

approach does not extend well to 3D, where frontiers

are generally smaller and far more numerous (Shen et al

2012).

Actions can also be generated by sampling from a set

of motion primitives (Fig. 3(a)). Since motion primitives

can be precomputed prior to online exploration, they

are an efficient choice for real-time exploration. Colli-

sion checking involves stepping along actions during a

breadth-first or depth-first search and pruning all nodes

(actions) that lie below those that contain a collision.

Finally, a third method for generating actions is lat-

tice graph planning. Lattice graph planners define a

discrete set of goal states, and solve Boundary Value
Problems (BVPs) to find trajectories from the origin

to each goal (Pivtoraiko and Kelly 2005; Pivtoraiko

et al 2009, 2013) (Fig. 3(b)). The resulting set of mo-

tion primitives can be rotated and translated to the

robot’s current position at run-time, and sampled from

to produce candidate actions. Like other motion primi-

tives, lattice graph actions can be precomputed and are

therefore a suitable choice for real-time exploration.

The latter two action generation strategies produce

local plans, and do not consider globally informative

goal locations. We do however utilize these myopic plan-

ners throughout our discussion to demonstrate the com-

putational savings of the proposed map compression

strategies, noting that a global planning strategy can

always be added on top.
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Fig. 4 Time (median of 105 samples, Intel 2.7 GHz processor)
to evaluate CSQMI for a single beam is empirically linear in
both the OG cell resolution ∆, and the measurement range.

3 Environment Model Adaptation using the

Information Bottleneck Method

To rapidly explore an uncertain environment, an au-

tonomous mobile robot must update its localization,

mapping, planning, and control loops at a high frequency.

When navigating at a high velocity, the planning step

(specifically, line 3 of Alg. 1) is comparatively expen-

sive; an increased velocity requires increased planning

frequency, yet one iteration of planning incurs the fixed
computational cost of evaluating the active perception

cost function in (2) over the set Xτττ of candidate actions.

Regardless of the information metric chosen, for a fixed

|Xτττ | there is a threshold planning frequency past which

the robot will saturate its computational resources. This

threshold restricts the velocity of the robot’s navigation,
and therefore the time efficiency of its exploration.

For example, Fig. 4 demonstrates that the time re-

quired to evaluate CSQMI (i.e. evaluate line 3 of Alg. 1)

for one beam on an OG map at 30 m is 0.015 ms at

10 cm cell resolution. Computing CSQMI over a sub-

sampled 2D laser scan with 500 beams would therefore

require 7.5 ms, limiting a 10 Hz single-threaded planner

to consideration of only 13 actions at a time, which is

insufficient for high speed indoor navigation.

Fortunately, the computational cost of active per-

ception planning can be dramatically reduced by ap-

proximating J . In this section we propose a method

for reducing the cost of (2) by taking advantage of the

way CSQMI (or SMI, if desired) is calculated for beam-

based sensors. The approximation involves simplifying

or compressing the environment model, m, in a way that

sacrifices a minimal amount of information pertinent to

the cost function ICS[m; zτττ |xτττ ].

Calculating information metrics between an uncer-

tain map and an expected future sensor measurement

(e.g. SMI and CSQMI) requires effectively simulating

beams that would be captured from locations along

xτττ and evaluating the amount of new information that

those measurements would be expected to uncover given

the current map. With an OG representation, evaluating

these metrics therefore requires iterating over beams

in the simulated measurement, raycasting along those

beams to find intersections with cells in the map, and

computing an expected reduction in uncertainty using

the intersected cells’ occupancy values. Intuitively, as

the resolution of cells in the OG decreases, so does the

number of cells that a raycast must traverse. Therefore
the computational cost of information-theoretic reward

evaluation is a function of the cell resolution of the OG.

For example, by employing the approximate CSQMI

technique proposed by Charrow et al (2015b), computa-

tional cost becomes linear in both the OG cell resolution

and the range of the measurement (Fig. 4). Reducing

the number of cells needed to express the OG while

preserving the occupancy information it contains would

therefore lead to large computational savings.

3.1 The Information Bottleneck Method

Lossily compressing the environment model will nec-

essarily lead to distortion in the values returned by

CSQMI, the excess of which will cause the active per-

ception optimization (2) to choose a poor action for

exploration. It is therefore prudent to balance compres-

sion of the environment model (fast CSQMI evaluation)

with conservation of information (good action choices).

To this end, we employ the Information Bottleneck (IB)

method from rate distortion theory, a method for finding
the optimal compressed representation X̂ of a random

variable X that preserves maximum information about

a second random variable Y ,

min
p(x̂ | x)

I[X; X̂]− βI[X̂;Y ]. (7)

Here, I[· ; ·] is a general information metric operating on

the distributions of two random variables (for instance,

SMI or CSQMI). The IB optimization provides a trade-

off between compressing the variable X and preserving

meaningful information through the tuning parameter

β ∈ R+. As β → 0, the optimization tends towards

the trivial point compression, whereas when β → ∞,

X̂ approaches X (Principe 2010). The two variables

in the information terms of the IB functional can be

equivalently thought of as squeezing the information that

X contains about Y through a “bottleneck” quantization

function Q(·) (where X̂ = Q(X)) (Tishby et al 2000)

(Fig. 5).

The IB method permits an explicit solution for the

p(x̂ |x) minimizing (7) when using SMI as the informa-
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Fig. 5 A diagram of variables relevant to the IB method.
IB attempts to minimize the mutual information between X
and its compressed form, X̂, while maximizing the mutual
information between X and a second variable, Y = g(X). Q
is a function quantizing X.

tion metric. However, the solution is computed itera-

tively and therefore requires multiple evaluations of the

distributions p(x̂ |x), p(x̂), and p(y | x̂) (Tishby et al

2000).

3.2 Map Adaptation via the IB Method

To tailor the IB method to the problem of robot ex-

ploration, let X refer to the robot’s map m, and Y to

measurements zτττ . The IB method would ideally enable

adaptive selection of a simplified map representation as

the robot navigates. In this case, the iterative algorithm

for computing the optimal solution is too expensive for

online scenarios. Instead, we find the map compression

function, C∗, from a family of compressions, C, that

minimizes the IB functional

C∗ = argmin
C∈C(m)

ICS[m;C(m)]− βICS[C(m); zτττ |xτττ ]. (8)

Note that the IB method does not require the en-

vironment model m to be an OG, nor does it require

any specific compression operation on m. In this sense,

the IB method generalizes across choice of environment

model and choice of compression on that environment

model.

The influence of the parameter β on the IB optimiza-

tion is shown for a multi-beam measurement captured

from a planned future location in Fig. 6. The IB cost

functional is plotted for varying values of β. When β is

small, the optimization is dominated by the minimum

information term and favors maximum compression,

whereas when β is large, the optimization favors preser-

vation of information.

During exploration, adapting the robot’s environ-

ment model requires evaluation of ICS[m;C(m)] and

ICS[C(m); zτττ |xτττ ] over |C| versions of the map. In Sect. 4

we describe a strategy for generating the set C of com-

pression functions, and in Sect. 5 we propose an ap-

proach for triggering the IB optimization adaptively to

decide on the best current environment representation.

(a)

0 1 2 3 4 5

−2.0

−1.0

0.0

1.0

Compression Level

 

 
x104

= 2 .0
= 1 .0
= 0 .2
= 0 .1

(b)

Fig. 6 (a) A sensor measurement is simulated from the end-
point of a planned action. The IB cost functional in (8) is
shown on the dependent axis of (b) for varying values of β.
The optimal compression level (filled markers) decreases as
β increases, favoring preservation of information about the
measurement.

4 Environment Model Compression using the

Principal of Relevant Information

The IB method from Sect. 3 can be used to select an

environment representation that retains a maximum

amount of information useful to the active perception

optimization (2), and simultaneously minimizes its com-

putational cost. The IB method assumes access to a

family of functions, C, that operate on the map to pro-

duce a compressed version, or in the case of OGs, a

version with a lower resolution.

In this section we review the Principal of Relevant

Information (PRI) (Principe 2010), a second technique

from rate distortion theory, for compressing a robot’s

environment model. We then apply the IB method and

the PRI to OG maps, and introduce the concept of an

OG pyramid. We show that in many cases the resolution
of an OG can be dramatically reduced before exploration

performance is negatively impacted.

4.1 The Principle of Relevant Information

The problem of reducing an environment model to its

relevant information (Geiger and Kubin 2013) can be

formulated as an information theoretic optimization

using the PRI. The PRI is a technique for learning a

reduced representation X̂ of a random variable X such

that both the entropy of X̂ and the divergence of X̂

with respect to X are minimized.

Λ(X̂) = min
X̂

H(X̂) + λD(X || X̂). (9)

Here, H(·) is a general entropy measure, and D(· || ·)
is a general divergence measure. The PRI cost function

shares many similarities with the IB optimization in (7).

The two terms of the PRI cost function are Rényi’s

α-entropy, a generalization of Shannon’s entropy that

describes the amount of uncertainty in its argument, and



8 Erik Nelson et al.

Rényi’s α-divergence, another generalized divergence

measure that describes the distortion between p(x) and

p(x̂). These terms simplify to Shannon entropy and KL

divergence for α = 1.

Intuitively, the PRI trades off information redun-

dancy in X̂ (minimize entropy) for errors induced by

using the compressed form X̂ to represent the origi-

nal (minimize divergence). The variational parameter

λ ∈ R+ balances this trade-off. Choosing λ = 0 forces

the optimization to select X̂ such that H(X̂) = 0. Total

entropy minimization is only possible for values of X̂

that are completely determined. By contrast, choosing

λ→∞ reduces to minimizing the divergence between

p(x) and p(x̂), giving back the original data.

Following Principe et al. (Principe 2010), we choose

α = 2 which gives us Rényi’s 2-entropy,

H2(X) = − log2

∑
i

p2(xi), (10)

and the Cauchy-Schwarz divergence (5), which together
allow a direct relation between the two terms of the PRI

cost function,

H2(X̂) + λDCS(X || X̂) = (11)

(1− λ)H2(X̂)− λH2(X)− 2λ log2

∑
i

p(x̂i)p(xi).

The second term has no influence on the minimization

over X̂, and can be ignored. To simplify the optimization,

we choose to give equal weight to entropy and divergence,
and optimize for λ = 1. By noting that the summand

in the third term of (11) must be positive, the PRI

optimization can be simplified to

Λ(X̂) = max
X̂

∑
i

p(x̂i)p(xi). (12)

4.2 Using the PRI for Occupancy Grid Compression

The PRI is well-suited for simplifying a robot’s environ-

ment model. We now provide details of customizing the

PRI for OG compression as an example.

Ideally, a low-resolution compressed OG would rep-

resent its high-resolution originator well. The divergence

minimization term in the PRI accomplishes this. The

entropy term in the PRI drives occupancy values in

the compressed map towards being determined. For

example, briefly suppose that a 2 × 1 region of cells

must be compressed to a single cell, where one of the

original cells has a high probability of occupancy and

the other has a low probability. Minimizing Cauchy-

Schwarz divergence would result in a mixture of the two

probability values, which increases the uncertainty of

the cell’s occupancy. While this increase in uncertainty

through compression is instinctive in most applications,

robot navigation typically relies on operations such as

raycasting and collision checking on the map. For these

operations it would be harmful to lose information about

free and occupied regions of the environment that were

known prior to compression. Minimizing entropy in the

PRI optimization alleviates these concerns, as it forces

cell occupancy probabilities in the compressed map to-

wards being determined. In other words, the entropy

minimization component of the PRI cost function forces

occupancy probabilities towards EMP and OCC.

To apply the PRI to OG compression, let mK be

an OG with K cells (for the remaining map notations,

superscripts will denote cell counts), and substitute it

for X. In order to solve the problem, we add three

constraints.

1. X̂ should represent X well locally. Compression over

the entire map can therefore be accomplished by

performing compression in many small square (cubic
in 3D) independent regions mR ⊆mK by exercising

the OG assumption that individual cell occupancy

probabilities are independent.

2. To remain computationally tractable, only the set

of compressions that reduce OG cell count in each

dimension by factors of two will be considered. There-

fore an OG mK will be compressed to an OG m2−dnK ,

where d is the OG dimension and n is the number

of 2× compressions in each dimension. The set of

compressions with this property can be expressed

using

Cn(mK) = m2−dnK , n ∈ N≥0, (13)

remembering that when n = 0, Cn(mK) = mK .

The value of 2−dnK may not be integer if the cell

count along any dimension in the original map is

not a power of 2. In practice, edge cases can be

handled with padding, but for this discussion we

consider only maps with a cell count that is a power

of two in each dimension. Both mK and Cn(mK)

will have the same global metric dimensions, but will

have different cell edge lengths and cell counts when

n ≥ 1.

3. If X is an OG, X̂ must also be an OG.

Under these constraints, the map can be compressed

by decomposing it into independent regions, and com-

pressing each region. For each region mR, the PRI can

be used to find a multivariate random variable m̃R

that has uniform occupancy probabilities and minimizes

both entropy and divergence with respect to mR. The

occupancy probability of each m̃R, which we denote

õR , p(m̃R = {OCC, . . . , OCC}) = p(m̃R
i = OCC),∀i ∈
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{1, . . . , R}, can be reduced to a scalar, yielding the occu-

pancy probability of a single cell in the compressed OG:

õ1 , p(m̃1 = OCC) (Fig. 7). The occupancy distribution

of a cell in the compressed map is completely determined

by knowing õ1, because p(m̃1 = OCC) = 1−p(m̃1 = EMP),

so the set of õ1 values from independent regions are

all that is necessary to determine the compressed OG

Cn(mK).

Using these notations alongside the PRI optimiza-

tion in (9), an OG region m̃R that minimizes entropy

and divergence with respect to mR can be found by

maximizing

Λ(m̃R) = max
m̃R

∑
µR

p(m̃R = µR)p(mR = µR), (14)

where µR iterates over maps of size R.

Solving this optimization involves iterating through

all permutations of maps that have cell count R and

multiplying the probability that mR takes on a specific

permutation, µR, with the probability that m̃R also

takes on that permutation. Fortunately, although the

space of such maps is large, p(m̃R) is zero for all but two

permutations due to the constraint that m̃R must have

uniform occupancy. These two permutations are the

maps {EMP, . . . , EMP} and {OCC, . . . , OCC}. In all other

permutations, the variable p(m̃R = µR) evaluates to

zero, causing the corresponding term in the sum to eval-

uate to zero. The two non-zero terms in the summand

of (16) can therefore be enumerated explicitly,

∑
µR

p(m̃R = µR)p(mR = µR) (15)

= p(m̃R = {EMP, . . . , EMP})p(mR = {EMP, . . . , EMP})
+ p(m̃R = {OCC, . . . , OCC})p(mR = {OCC, . . . , OCC})

= (1− õ1)

R∏
i=1

(1− oRi ) + õ1
R∏
i=1

oRi .

Rather than finding the value of m̃R that maximizes

the cost function (i.e. the compressed map region itself),

we are more interested in the occupancy probability of

that map region. We therefore modify the optimization

in (14) to return the argument of maximization

m̃R
∗ = argmax

m̃R

∑
µR

p(m̃R = µR)p(mR = µR), (16)

noting that the occupancy value of the compressed

map region can be recovered with õ1∗ = õR∗ = p(m̃R
i =

OCC),∀i ∈ {1, . . . , R}.

(a) OG compression se-
quence.

(b) Probability space of the
top two grid cells in mR

in (a).

Fig. 7 For each square (cubic in 3D) region mR in the un-
compressed OG mK , the PRI optimization finds a random
variable m̃R that minimizes (9) and is constrained to have
uniform occupancy probability.

Substituting the expanded sum into the PRI opti-

mization in (16) gives

m̃R
∗ = argmax

m̃R

(
(1− õ1)

R∏
i=1

(1− oRi ) + õ1
R∏
i=1

oRi

)
.

(17)

Enumerating the two possibilities: when all of the

cells in m̃R are empty, the objective function evalu-

ates to
∏R
i=1(1 − oRi ), and when all of the cells are

occupied, the objective evaluates to
∏R
i=1 o

R
i . Denoting

πR ,
∏R
i=1

oRi
1−oRi

, these two possibilities imply that the

solution to Eq. (17) is

m̃R
∗ =

{
{EMP, . . . , EMP} if πR < 1

{OCC, . . . , OCC} if πR > 1
, (18)

with an ambiguous case when πR = 1, which is the

case when all cells in the uncompressed map region

either have exactly contradictory values, or have an

unknown occupancy. Knowing the occupancy status

of the compressed map region allows us to assign an

occupancy probability to each case.

õ1∗ =


0 if πR < 1

1 if πR > 1
1
2 if πR = 1

. (19)

The PRI solution for OG compression in (19) yields

a simple rule: if the product of cell occupancy likelihoods

in a given region is greater than one, set the occupancy

probability of the corresponding cell in the compressed

OG to one. Likewise set the occupancy probability of the

single cell to zero if πR is less than one, and to one half

if πR evaluates to one. Note that the third case occurs

when either all cells in the uncompressed map have

occupancy probabilities that average to one half. This
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Max

PRI

PRI

PRI

Fig. 8 A small map compressed using four different strategies.
As cell edge length ∆ grows, the PRI strategy retains map
geometry for longer than maximum occupancy compression.

includes the case when their occupancies are all exactly

equal to one half. Therefore fully unknown regions and

regions of mixed certainty compress to unknown cells.

While the optimal PRI solution gives reasonable

compressed maps, one may introduce a heuristic to

increase the fraction of occupied cells that are preserved

through compression by multiplying the right-hand sides

of the inequalities in (19) by η ∈ R+. As η decreases,

occupied cells will be preserved through compression

with higher frequency. For example, for applications

involving raycasting it can be useful to include this

heuristic so that occupied cells in the original map do not

vanish through compression and lead to longer raycasts.

This heuristic modification can be applied by instead

using

õ1∗ =


0 if πR < η, πR 6= 1

1 if πR ≥ η, πR 6= 1
1
2 if πR = 1

. (20)

Note that when using the η heuristic, the πR = 1 condi-
tion is kept so that completely unknown square regions

of cells remain unknown through compression. We ad-

vise using η < 1 for applications involving raycasting

(e.g. exploration), and η = 1 for general purpose map

compression.

The PRI compression solution is compared in Fig. 8

for different values of η against maximum occupancy

compression (used by other environment models such

as OctoMap (Wurm et al 2010)). As the amount of

compression increases, the PRI solution tends to retain

major map features. Decreasing the heuristic parameter

η from one causes occupied cells to be retained through

compression with a higher frequency.

4.3 Occupancy Grid Pyramids

The IB method from Sect. 3 assumes access to a family

of functions, C, that operate on a representation of the

environment to produce a compressed version. The IB

Fig. 9 A three-level OG pyramid.

method selects one function with which to compress the

map, yielding a low resolution representation that can

then be used to more efficiently evaluate CSQMI and

other information metrics for exploration.

Armed with the PRI optimization, we define a multi-

resolution OG pyramid on the map m as

Cn(m) , {Ci(m)}ni=0, n ∈ N≥0, (21)

where each OG Ci(m) is generated by applying the
PRI optimization in (20) to m over larger and larger

square or cubic regions. The data structure’s name is in

reference to the image pyramid, a multi-resolution image

representation commonly used in computer vision (Burt

and Adelson 1983). A three-level OG pyramid is depicted

in Fig. 9.

5 Adapting the Environment Model Online

To aggregate the ideas introduced in Secs. 2-4, we now

outline a strategy for adapting the robot’s environment

model during exploration in response to its local environ-

ment. The goal of online environment model adaptation

is to reduce the robot’s map down to a minimum amount

of information necessary for exploration, so that the ac-

tive perception optimization in (2) can be computed

rapidly. These factors enable higher planning frequencies

and consideration of more actions per planning itera-

tion, enabling increased rates of exploration. For the

following formulations we assume an OG environment

model. However the environment does not necessarily

need to be represented by an OG, as the IB method

and the PRI compression strategy generalize to other

environment representations.

During each planning iteration, the robot is given

access to two versions of its map: one full resolution

version that is updated with new sensor measurements

with line 8 of Alg. 1, and a coarser resolution map that

is computed by solving the IB optimization in (8). The

full resolution map is used for collision checking along

planned actions which in our case is a relatively inexpen-

sive process that must be performed at the maximum

available resolution. The coarse resolution map is used

for evaluating CSQMI efficiently.
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To reinforce the notion of computational savings

afforded by map compression, Fig. 4 demonstrates that

using Cn(mK) in place of mK will reduce the time

required to evaluate CSQMI by 2n (CSQMI is computed

by summing over cells intersected by 1D beams). In

Sect. 6 we will show that OG maps can typically be

compressed to cells on the order of 0.8 − 3.2 meters

before exploration performance is significantly altered.

Substituting these for an OG with a base resolution of

0.1 m, a typical choice for indoor mapping, would result

in a worst case CSQMI cost reduction of 8 times, and a
best case reduction of 32 times.

The IB optimization (8) is used to select a resolu-

tion for the coarse map. Rather than solving the opti-

mization after the first several sensor measurements are

integrated into the map and fixing the resulting environ-

ment representation, we employ an adaptive strategy

that recomputes an optimal compression function when

the robot enters a significantly different area of its envi-

ronment. Adaptation is useful when, for example, the

robot transitions from a wide-open area consisting of

mostly empty cells that can be heavily compressed with-

out discarding much information to a narrow corridor

that cannot.

Algorithm 2 AdaptEnvironmentModel(m, τττ , n, δ)

1: h← MeanLocalMapEntropy(m) . Eq. (10)
2: if |h− hlast| ≥ δ then
3: Cn(m)← BuildOGPyramid(m, n) . Eq. (21)
4: Xτττ ← GenerateActions(m, τττ)
5: C∗(m)← EvaluateIB(Cn(m),Xτττ ) . Eq. (8)
6: hlast ← h

To adapt the environment model, on a fixed fre-

quency the robot evaluates the mean entropy of cells

in a fixed size local submap around its current position

using (10), giving a value in the range [0, 1]. Although

not a perfect indicator, a large increase or decrease in

local map entropy signifies that the local environment

has changed in structure. Other possible triggers for

adaptation include the mean or minimum distance to an

obstacle, changes to the ratio of free space to occupied

space in the local map, or changes to feature-based map

descriptors. If the absolute change in entropy since the

last adaptation is greater than a threshold amount, an

OG pyramid is generated using the PRI compression

method, and an IB optimization is triggered on the

new OG pyramid to select an optimal representation for

the map. The environment model adaptation process is

outlined in Alg. 2.

The new coarse resolution map is updated and used

alongside the full resolution map for CSQMI evaluation

until the criteria in line 2 of Alg. 2 is met again. Cal-

(a) mK ,∆ = 0.1 m (b) C1(mK),∆ = 0.2 m

(c) C3(mK),∆ = 0.8 m (d) C5(mK),∆ = 3.2 m

Fig. 10 CSQMI reward along motion primitives computed
on compressed OGs. The best exploration path (blue), i.e.
that which maximizes (2), is only altered when n = 5. Green
corresponds to high CSQMI reward, and red to low.

culating the entropy of cells in a local submap around

the robot has a bounded computational cost, and is

inexpensive in comparison to the active perception opti-

mization (2) that is performed each planning iteration.

While the IB optimization itself is expensive (as CSQMI

must be computed over n different maps of varying

resolution), the condition for entering the adaptation

subroutine occurs infrequently.

6 Results

6.1 Effects of Map Compression on Exploration

Environment model compression was motivated orig-

inally by the observation in Fig. 4 that compression

results in increased efficiency of evaluating CSQMI, in

turn reducing planning time, and allowing a robot to ex-

plore its environment at a higher velocity. However, it is

important to ensure that sensor measurements deemed

informative on the original map remain informative after

compression. A library of forward-arc motion primitives

(Sect. 2.4) planned from a simulated robot’s position

into a partially explored map is depicted in Fig. 10.

Reward is computed at the actions’ endpoints using

CSQMI between the expected future sensor measure-

ment and compressed maps. The relative rewards offered

by the planned actions retain their ordering until the

map is compressed significantly (n = 5), at which point

a different optimal action is chosen. Although different,

the optimal action chosen for the map with the highest

compression is still a high-reward path with respect to

the original map. Most importantly, computing CSQMI
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reward on the map with the highest compression is

32 times more efficient than on the original map. To

demonstrate the PRI compression strategy, 2D and 3D

OG pyramids of a large warehouse environment are

shown in Figs. 11 and 12. The parameter η was set to

0.1 for the 2D pyramid, and to 0.5 for the 3D pyramid to

persuade the compression to retain occupied cells. This

preservation is clearly demonstrated in the transition

from Fig. 12(a) to Fig. 12(d), where single occupied cells

surrounded by free areas in the original map remain oc-

cupied even after reducing resolution from 0.1 m to 0.8.
In the 2D map, intersections between free and unknown

space are preserved until a severe compression is applied

(n = 5). Regions occupied by obstacles are represented

well throughout all map resolutions.

In our ground robot experiments we use η = 0.1, and

β = 0.5 to persuade larger map compressions (Fig. 6).

We set the threshold δ, used to trigger IB optimizations,

to 0.05. This value causes an IB optimization every one

to ten hundred meters that the robot travels in the

warehouse environment depicted in Figs. 11 and 12. In

most environments, compressing a base OG with 0.1 m

resolution to 3.2 m resolution (n > 5) yields a mostly-

free or mostly-occupied compressed OG. We therefore

set n = 5 as an upper limit when creating OG pyramids.

6.2 Simulation and Ground Robot Experiments

To evaluate the effects of the IB optimization and the

PRI compression strategy on the accuracy and efficiency

of information-based exploration, we performed exper-

iments in simulation and on a ground robot. In both

sets of experiments, we assume that the robot is able

to estimate its own state from IMU and laser scan mea-

surements, and produce an accurate OG map of its

surroundings in real-time. The assumption of accurate

localization and mapping is only valid for feature-rich

environments like those shown in our experiments. How-

ever, in general one may consider augmenting the explo-

ration cost function with an active localization compo-

nent (Fox et al 1998; Stachniss et al 2004). For state es-

timation and mapping we use a laser- and inertial-based

SLAM implementation similar to the system described

by Shen et al. (Shen et al 2011), which leverages ICP for

odometry (Pomerleau et al 2013), a histogram filter for

localization, and an unscented Kalman filter (UKF) for

sensor fusion (Thrun et al 2005). We assume no encoder

odometry. The OG is updated at 10 Hz and has a 0.1 m

resolution. The robot’s laser scanner sweeps in a 270◦

arc with 1081 beams, with a max range of 30 m.

Simulated exploration trials on a maze-like 25 ×
25 m map were conducted to examine the effects of

OG compression on the robot’s path and achievable

Table 1 Simulated exploration trial data (Fig. 13).

n ∆ (m)
Planning

Freq. (Hz)

Maximum
Velocity
(m/s)

Time (s)

0 0.1 1.5 0.35 230.0
2 0.4 6.0 1.5 54.7
4 1.6 24.0 3.0 31.9

speed. In each trial, the coarse map used to evaluate

CSQMI reward was compressed to a different resolution

using (20). Resulting exploration paths are shown in

Fig. 13. When calculating CSQMI reward with respect

to the original map, the robot is only able to choose

actions (2) with a 1.5 Hz frequency before saturating

computational resources, leading to a maximum safe

velocity of 0.35 m/s. After compressing to n = 4, the

computational cost of evaluating CSQMI is reduced

enough that the robot can plan with a 24.0 Hz frequency,

allowing a velocity of 3.0 m/s. As n increases, paths close

to walls become occupied in the compressed map and

yield low CSQMI reward, so the robot chooses paths in

the middle of free space with a higher likelihood. Table 1

shows planning frequency, velocity, and total trial time

for these simulations. Exploration was terminated once

the CSQMI between each action and the map fell below

a threshold value. The action generation strategy used

for these trials was myopic, and did not globally consider

unexplored areas of the map. Adding a global planning

strategy would aid in completing each trial’s map.

To evaluate the IB optimization and adaptive strat-

egy introduced in Sect. 5, we explored a 35×35 m section

of Carnegie Mellon University’s Field Robotics Center

with a ground robot. The ground robot was equipped

with a MicroStrain 3DM-GX3-35 IMU, a Hokuyo URG-

30LX 30 m range laser scanner, and an onboard com-

puter with an Intel Core i5 processor and 8 GB RAM.

The robot’s motor controllers and wheels limit its maxi-

mum forward velocity to 1.6 m/s, which was achieved

several times throughout the trial. The ground robot,

its 72 m exploration path from the environment, and a

history of environment model adaptations are depicted

in Fig. 14. The amount of compression applied to the

map allows the robot to adapt its planning frequency

to consider more actions in the same amount of time.

Dashed lines in Fig. 14(c) correspond to moments when

the adaptation condition in line 2 of Alg. 2 is met and

colored lines indicate the adaptation condition is met

and a new n is computed. Since the planner generates

primitives in the robot’s forward direction, entropy is

generally computed in the local map in front of the robot.

n remains at 4 in most of the free regions in the trial,

and reduces to 0, 1, and 2 in locations where compres-

sion results in large reductions to CSQMI reward (e.g.

the first n = 0 region occurs as the robot moves through
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(a) m, ∆ = 0.1 (b) C1(m), ∆ = 0.2 (c) C2(m), ∆ = 0.4

(d) C3(m), ∆ = 0.8 (e) C4(m), ∆ = 1.6 (f) C5(m), ∆ = 3.2

Fig. 11 A six-level 2D OG pyramid, C5(m), built from a partially explored base OG, m, in a cluttered warehouse environment.
The PRI compression strategy preserves boundaries between free and unknown space, and expands occupied cells. ∆ denotes
cell edge length. The robot is shown in blue, and its path in green.

(a) Original map (b) C1(m), ∆ = 0.2 (c) C2(m), ∆ = 0.4 (d) C3(m), ∆ = 0.8

(e) Log-odds coloring (f) C1(m), ∆ = 0.2 (g) C2(m), ∆ = 0.4 (h) C3(m), ∆ = 0.8

Fig. 12 A four-level 3D OG pyramid, C3(m), generated with PRI compression using η = 0.5 (b)–(d) and η = 1 (f)–(h),
captured from the same environment as Fig. 11. Only occupied cells are depicted except in (e), which shows free (grey) and
occupied (black) cells colored by log-odds.

(a) n = 0, ∆ = 0.1 m, ẋ = 0.35 m/s (b) n = 2, ∆ = 0.4 m, ẋ = 1.5 m/s (c) n = 4, ∆ = 1.6 m, ẋ = 3.0 m/s

Fig. 13 A robot explores a simulated 25× 25 m maze environment, planning its actions by evaluating CSQMI against maps
with different amounts of compression. The full resolution map with ∆ = 0.1 m is depicted in each figure to show map
completeness. Varying the compression level n only causes small changes in exploration behavior (e.g. navigating slightly further
from walls). However, due to exponential increases to planning frequency, the vehicle is able to increase its maximum velocity
from 0.35 m/s to 3.0 m/s (Table 1).
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(c) Adaptation history of n, and its effect on planning
frequency and vehicle velocity

Fig. 14 As the ground robot explores, it recomputes an OG resolution and adapts its planning horizon accordingly.

a doorway, the second as it plans to move through a

hallway). Planning frequency is modified as n changes,

and the robot accelerates or decelerates accordingly.

7 Conclusion and Future Work

In this work we developed information-theoretic opti-

mizations to reduce the computational expense of active

perception planning, enabling a mobile robot to explore
its surroundings more efficiently and at higher speeds.

We introduced formulations for active perception plan-

ning, describing an information cost function that when

optimized gives the action that maximally reduces uncer-

tainty in the robot’s representation of its environment.

We proposed a method for reducing the computational
cost of evaluating this cost function by compressing

the robot’s environment model to contain only relevant

information for exploration, and showed that the IB

method can be used to select a compressed environ-

ment model that maximizes efficiency of exploration.

We then discussed an information-theoretic optimization

for generating compressed environment representations

using the PRI, and demonstrated a method for adapt-

ing the robot’s model of its environment in response

to its surroundings so as to always keep the best map

representation for exploration.

These results were tested through simulation and

ground robot experiments, where robots explored previ-

ously unknown areas. The presented methods decrease

the computational cost of evaluating information-theoretic

reward metrics, enabling exploration at higher speeds

through cluttered indoor environments.

There are many interesting avenues for future re-

search on the topics of efficient active perception plan-

ning as well as environment representations for explo-

ration. First, the IB and PRI optimizations both gener-

alize to other environment representations; future work

on this topic could include applying the IB and PRI

methods to continuous representations such as Gaus-

sian mixture models of landmarks or Gaussian process
maps (Kim and Kim 2012a,b; T O’Callaghan and Ramos

2012). The idea of reducing the computational cost of

active perception planning appears even more valuable

in 3D planning scenarios with aerial robots, or for multi-

robot planning, where a larger number of actions must
be evaluated per planning iteration in order to explore.

Finally, it would be interesting to apply the ideas pre-

sented to robotic systems capable of achieving more

extreme dynamics to examine both the computational

and physical factors limiting exploration speed.
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