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Abstract—This paper addresses the problem of planning views
for modeling large, local, substantially 3D terrain features at
long range from surface rovers. These include building-size and
stadium size pits with vertical walls. Pits have been identified in
recent high-resolution images of the Moon and Mars. Planetary
pits are interesting scientific targets created by collapse, often
exposing layers of bare rock in their walls, hinting at past vol-
canism and other subsurface processes with their morphology.
Some offer glimpses into caves. This paper presents a pipeline
for view trajectory planning that enables detailed modeling of
planetary pits from surface rovers. Techniques for converting
prior terrain knowledge into a planning problem are developed,
methods for planning rover images are discussed, and a com-
parison of different image-based reconstruction methods for pit
modeling is presented. Results from preliminary field experi-
ments for the end-to-end view trajectory planning pipeline are
presented.
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1. INTRODUCTION
This paper addresses the problem of planning views for
modeling large, local, substantially 3D terrain features at
long range from surface rovers. These include building-size
and stadium size pits with vertical walls. Pits have been
identified in recent high-resolution images of the Moon and
Mars. Planetary pits are interesting scientific targets created
by collapse, often exposing layers of bare rock in their walls,
hinting at past volcanism and other subsurface processes with
their morphology. Some offer glimpses into caves. Pits have
flat or sloping aprons that drop from the surface to meet steep
walls. These differ from the raised rims and blocky ejecta
around craters. While surface rovers cannot negotiate steep
pit walls, aprons facilitate long-range cross-pit viewing of far
walls.
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Figure 1. A rover views across a planetary pit to image the
far wall.

Past planetary rovers have been myopic, sensing as needed
to plan far enough to safely take the next step and examining
nearby targets as they encounter them. In this case, a rover
can be considered co-located with the viewed terrain. The
pit modeling case, where targets lie on the un-reachable far
wall of a pit, breaks this assumption. Multiple targets will
be visible from a single position, and multiple positions will
have views of the same target.

The quality of rover images is also greatly affected by the
incidence angle of transiting sunlight, so the timing of images
matters. Myopic rover operations, only planning within a
rover’s sensor view, would take many days to model a pit on
Mars. On the Moon, where multiple daylight periods are not
guaranteed, such myopic operations might fail to complete
the task. The need is for a planner that can autonomously
determine what targets to view, from what positions, at what
times.

Rovers in this research are assumed to have at least one
high-resolution camera. With the right lensing, cameras
can capture high-resolution data at long distances. They
can be used to image pit walls, reconstruct pit geometry,
and even determine material types, but in order to get high
quality models from camera images, attention must be paid to
both the time-dependent illumination angles and the position-
dependent view angles. This includes relative angles among
sets of images used for stereo reconstruction or material
identification. The ordering of views is also important, not
only because of the time of day that images are taken, but
also to minimize distance traveled.

The paper formulates the problem as a new vehicle routing
problem: the Orienteering Problem with Time Windows
and Inter-Node Dependencies (OPTWIND). This is related
to the Orienteering Problem, an established vehicle routing
problem, in which a traveler gets reward by visiting nodes
and wants to maximize reward but at the same time minimize
distance traveled. In the extension with Time Windows, visits
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Figure 2. The pipeline for view trajectory planning.

to a node are limited to a certain time window. OPTWIND ex-
tends the Orienteering Problem with Time Windows, adding
Inter-Node Dependencies.

This paper describes a pipeline for view trajectory planning
for modeling a planetary pit from a surface rover, going from
inputs available prior to a mission through the processing of
mission data into a detailed pit model. King’s Bowl pit in
the Craters of the Moon National Monument and Preserve,
Idaho, is used as an illustrative example.

The View Trajectory Planning Problem

The view trajectory planning problem selects what to image,
from where, and at what time in order to build a good model.
In order to plan, real-world inputs must first be translated into
a format that the planner can understand, and after the view
trajectory is executed and images are captured, these images
must be combined to build a model. Fig. 2 shows a diagram
of the pipeline for view trajectory planning for modeling
pits. Inputs include a prior model of pit geometry, (however
crude), information about the time (start and end) during
which the modeling task must be completed, the trajectory
of illumination direction over time for the pit to be modeled,
and rover operating restrictions.

Example Cases

Because pits are the only cave entrances identified so far on
the Moon and Mars, pits may one day provide entrances
to caves. Reconnaissance modeling with a surface rover
can help design and plan missions to descend into planetary
caves.

The Lacus Mortis pit, located at 44.962 N and 25.61 E in the
Moon’s Lacus Mortis region, is approximately 110 m wide
and 90 m deep and features a long ramp. This pit is used as
an example for prior model construction in Section 4.

Indian Tunnel is a lava tube cave in Idaho’s Craters of the
Moon National Monument and Preserve. It has several sky-
light pits, one of which is modeled from imagery in Section 8.
Evidence of lava tubes has been identified on the surface of
both the Moon and Mars [1], [2].

King’s Bowl pit is located along Idaho’s Great Rift, in the
Craters of the Moon National Monument and Preserve. The
pit was formed due to a steam explosion along the rift. It

is approximately 76 m long, 30 m wide and 30 m deep. At
one end, the pit provides entrance into a deeper cave. While
the formation mechanisms of pits on the Moon are likely
different from this pit, pits associated with rift systems have
been identified on Mars [2]. This pit also provides a good
functional analog for planetary pit modeling. Rock layers can
be identified in the pit walls, and the identification of shape
and material properties for pit wall layers is a useful science
objective, facilitating study of the formation of pits and their
surrounding geological environments. King’s Bowl is used as
an example for steps throughout the view trajectory planning
pipeline.

Paper Organization

The paper is organized as follows. Section 2 discusses related
work in the areas of view planning, mobile robot planning,
vehicle routing, and modeling. Section 3 presents the for-
mulation of the OPTWIND problem. Section 4 through
Section 7 discuss elements of the view trajectory planning
pipeline. Section 4 discusses what is expected as input to
the view trajectory planning problem. Section 5 discusses
how these inputs are transformed into an instance of the view
trajectory planning problem. Section 6 addresses the plan-
ning process. Section 7 compares several methods for image-
based reconstruction, operating on the same set of King’s
Bowl images. Section 8 discusses results from modeling
King’s Bowl, with planned sets of images, and results from
modeling a lava tube skylight pit. Section 9 summarizes
the results. Section 10 concludes the document and presents
ideas for future work.

2. RELATED WORK
View planning is fundamental to view trajectory planning for
modeling large, local terrain features like planetary pits with
images taken by surface rovers. This is especially true in
the discussion of how views are represented and how poten-
tial view-viewpoint pairs are selected. Unlike much view-
planning work motivated by factory applications, a rover
is constrained to move on the ground and avoid obstacles.
Traveling between viewpoints takes time and incurs risk.
This motivates the distinction between many view planning
methods and view planning for mobile robots, including view
trajectory planning. Planning routes with multiple destina-
tions is also critical to view trajectory planning for pit mod-
eling. The Orienteering Problem, and its multiple extensions,
provide insight on how to formalize view trajectory planning
for pit modeling. This section discusses prior methods that
address view planning, view planning from mobile robots,
and the Orienteering Problem and its extensions.

An understanding of how the model will be built from the
planned images is also critical when planning images for
model building. Current methods used to build models from
planetary mission data are discussed, along with techniques
for building models from many images, and techniques for
taking advantage of illumination.

View Planning

Planning a view trajectory requires a representation of view.
This is informed by prior work in view planning. What a view
sees, view target, where it is seen from, viewpoint, (camera
position and orientation), and how a view is created are all
important.

Tarabanis, Allen and Tsai make the distinction between

2



generate and test view planning methods, where a set of
viewpoint parameters are generated and tested to determine
the view target, and synthesis methods, where viewpoint
parameters are calculated for each given view target [3]. They
identify three components of the view planning problem: the
sensor parameters, the sensor and object models, and the
feature detectability constraints. Under sensor parameters,
they include sensor and illumination position and orientation,
as well as more camera-specific parameters (e.g. aperture,
focal length, exposure time). In this research, only sensor
position, sensor orientation, and illumination angle are con-
sidered. Camera-specific parameters are considered to be
fixed or are automatically computed on the fly. This reduces
the dimensionality of the planning problem.

Sensor and object models may contain models of image
formation, geometry of the target object, and photometric
information about the target material [3]. This work uses a
pinhole camera model for planning and assumes that there is
a coarse prior model of the terrain feature. Constraints on
illumination and view angles, as used in this work, could im-
plicitly encode knowledge of a terrain material. For example,
if for the set of materials from which the feature is expected to
be composed, there are known illumination angle ranges that
will not produce good images, those ranges can be excluded
by absolute illumination angle constraints.

Feature detectability constraints include whether there is line
of sight to the feature, and whether the sensor field of view
is sufficient to have the feature in frame, focus, resolution,
and distortion [3]. In planning for pit modeling, line of
sight, field of view, and distance (which affects resolution) are
considered in determining what positions can actually view
a target. Resolution and distortion can be controlled by con-
straints on view angle. The camera is configured such that any
target within the expected range of distances can be brought
into focus. As with sensor parameters, reducing the number
of feature detectability variables explicitly considered during
planning reduces the dimensionality of the problem.

View planning methods can be broadly categorized as model-
based and non-model-based [4]. Model-based methods as-
sume some a priori model of the object or feature to be mod-
eled, while non-model based methods do not. For planetary
missions, operators collect as much information about the
mission target as they can before landing, so it makes sense
to expect this information for the pit modeling case and to
exploit it to build a coarse a priori model.

In the photometric stereo work of Sakane and Sato, camera
and illumination positions are planned to reconstruct surface
normals for an object with known coarse position but some
uncertainty in position and orientation [5]. They use a Gaus-
sian sphere to predict surface normals and compute estimated
reliability and detectability metrics. They use a generate and
test method with potential camera and illumination positions
on a geodesic dome, compute these metrics for each, and
select the best positions. For a similar problem, Solomon and
Ikeuchi determine an exact cover of each face (described by
its estimated normal) by a set of light sources placed in an
icosahedron centered on the object [6], [7], [8]. Camera po-
sition is chosen from a set of possible viewpoints (a generate
and test method) to minimize the foreshortening of any faces
visible in that view. Additional views are added until all faces
to be inspected are covered.

Cowan and Bergman model polygonal objects with a lower
bound on resolution by using a synthesis method in which

camera positions lie on the intersection of spheres (with
radius determined by the maximum distance for a given reso-
lution) centered at vertices on the polygon’s convex hull [9].
They compute a region of acceptable light source positions,
using limits on minimum and maximum distance to get a
goal intensity of reflected light, and subtracting out regions
that would result in the camera seeing specular reflections.
In planning for pit modeling, the distance between the light
source (the sun) and the target is not controllable, but a range
of illumination angles are available, depending on time of
day, so a “region of acceptable light source placement” is
handled by absolute constraints on illumination angle for
imaging a particular patch of pit terrain, which in turn de-
termines the times when the patch can be imaged.

Tarabanis, Allen and Tsai use a synthesis method for deter-
mining camera position, orientation and imaging parameters
that computes regions in 8-dimensional space in which tar-
get features are visible, then optimizes over this space to
find the point farthest from the bounds of the region [3].
Choosing such points that are far from the edges that separate
acceptable from unacceptable views makes the method more
robust to uncertainty. Robustness to uncertainty could be very
important for pit modeling. It is addressed in pre-processing
steps by the choice of potential rover positions and views,
including the constraint that target terrain patches are smaller
than what a camera could cover in one view. It will not be
explicitly considered in planning.

Scott, Roth, and Rivest categorize model-based methods for
3D object reconstruction into those using set theory, graph
theory, or computational geometry[4]. Set theory methods
use a visibility matrix to encode which surface features on
the target are visible from which viewpoints. Graph theory
methods use aspect graphs, where aspect is defined as the
set of viewpoints that have qualitatively the same view, and
arcs connect adjacent aspects in the graph. Computational
geometry methods use the art gallery problem, which looks
for the minimum number and placement of guards to see
all internal walls of an art gallery. In this work, visibility
matrices are used to track which terrain patches are visible
from which rover positions.

In addition to model-based work, non-model-based methods
have also been tried for 3D reconstruction. These methods
often take a “next-best-view” approach. Given what has
been seen so far, the approach generates the next-best-view
that will provide the most new information. In some cases,
overlap with existing data to facilitate model building is also
considered [10]. Overlap between views is important for pit
modeling if one coherent model is desired instead of a set
of discrete, 3D patches. Overlap is addressed in this work
by setting target terrain patch sizes smaller than the camera’s
view, but it is not explicitly considered in planning.

How the 3D view target is represented also matters. This
could be based on volume, surface area, or small features of
specific interest. Methods that model polyhedral objects often
use target vertices and edges in view planning, and assume a
constant normal vector for faces. For more irregular targets,
such as planetary pits, the volume or surface area that views
observe could be discretized finely or coarsely into voxels
or surface area patches. Kruse, Gutsche and Wahl present
a volumetric method for planning sensor views to explore
a previously unknown 3D space where each voxel in a 3D
grid is marked as either occupied, free or unknown [11]. An
early effort in pit modeling by the authors used a similar
voxel-based approach with occupied, free or unknown voxels
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[12]. Given the large size of planetary pits, any fine voxel
discretization will quickly become very expensive in terms
of memory and computation, and voxelizations smaller than
about 0.5m/pixel were found to be infeasible in that work.
For the work presented in this paper, a surface-based method
is used to represent terrain shape.

For most work in planning viewpoints and illumination,
the illumination is either considered completely out of the
planner’s control and generally not important to the problem,
or completely under the planner’s control, meaning that any
of a set of illumination settings can be selected at any time
[9], [3], [6], [7], [8]. This differs from view trajectory
planning, where there are a set of potential illumination
conditions, but they happen at specific times. This means
that the planner can select illumination conditions that are
advantageous to the model-building objective, but it cannot
necessarily capture views of all target patches under the same
illumination condition, since this illumination condition will
not last indefinitely. The work presented in this paper consid-
ers view planning with time-dependant illumination. Another
major difference between traditional view planning methods
that do not consider time and view trajectory planning is the
fact that for traditional view planning, it is possible to get
full coverage of potentially viewable areas, while for view
trajectory planning it may be impossible to do so before a
time limit (e.g. the end of a rover’s mission due to onset of
lunar night or Martian winter).

Much early work in view planning centered around factory
inspection and modeling tasks. While Kruse, Gutsche and
Wahl used a metric of distance traveled between the current
sensor configuration and the next view, most classical view
planning methods do not. The most optimal views can be
selected no matter what positions they are captured from,
and the order can be determined based on metrics like in-
formation gain. For a mobile robot, choosing the next view
from an information-optimal perspective without considera-
tion for distance and navigation contingencies may produce
unreasonably long paths. For view trajectory planning for
pit modeling, distance traveled between viewpoints must be
considered.

View Planning from Mobile Robots

Next best view has been applied to the robotic exploration
of unknown environments [13]. Sawhney, Krishna and Sri-
nathan use the amount of visible (but yet unseen) terrain
combined with distance to determine the next best view for
individuals in a multi-robot team. They find that the metric
computed as (amount of unseen terrain)/distance is the most
successful out of several evaluated [14]. This method was
tried for pit modeling in the authors’ earlier work, but it
produced long path lengths for a single rover [12].

Moorehead describes robotic exploration as a Prize-
Collecting Traveling Salesman problem [15]. The salesman
gets a prize for visiting each city, but incurs a cost for
travel between cities, and prizes in each city are independent.
However, prizes in his work are the expected information gain
at each location, and thus they change as the robot travels
and information is gathered, so the prize in one city is not
truly independent from the prizes in previously visited cities.
This is also the situation in planning for pit modeling. Two
positions may have views of multiple patches of terrain, with
some overlap. Once one of these positions has been visited
and the views visible from that position have been taken, the
other will not have views to as many unseen patches.

Model-based view planning methods have also been applied
to mobile robots. Hollinger et al. use uncertainty to plan
sensor views for a ship inspection robot [16], [17]. They
use a Gaussian process to model the surface of the ship hull.
In their case, the cost of viewing is higher than the cost of
moving between viewpoints, which is not the case with pit
modeling. Englot and Hover address the same ship inspection
task [18]. They address view planning as a coverage sampling
problem and then address the multi-goal planning problem
once the set of views are decided. Robot view configurations
are randomly sampled, and they seek to build a feasible
covering set for the modeled target from among the set of
sampled views such that each geometric primitive is observed
a requisite number of times. For the multi-goal planning
problem, they use a Lazy Traveling Salesman Problem (TSP)
solver on the assumption that the cost of planning point-to-
point routes is high relative to the cost of solving the TSP,
since there are relatively few viewpoints (100-200). This may
also be the case for view trajectory planning for pit modeling.

Estlin et al. address the rover mission-activity planning
problem: choosing which rocks a robot will view from a
set of interesting scientific targets, and in what order [19].
Science targets are selected by a decision layer and then
ordered using a TSP heuristic solver. A global path planner
provides distance estimates, to get from point to point. These
distance estimates are used by the TSP solver.

Smith also addresses the rover mission activity planning
problem [20]. He describes it as an over-subscription plan-
ning problem, where there are too many goals for the time or
resources available. Planning for pit modeling is somewhat
similar, in that there are far more positions with views of ter-
rain than the rover should visit, though this is partly because
positions will have overlapping sets of visible targets. Even if
the rover covers all target patches, which may not be possible
depending on day length and rover resources, it would not
have visited every potential position to do so. While Estlin
et al. assume that once the planner decides which targets
will be viewed (and which will not), the set of activities is
fixed and it can be handed over to a TSP solver [19], the
order in which the rover chooses to sample the rocks will
determine the distance it has to travel to get to each rock, and
that determines the cost for each investigation activity. So,
as Smith notes, the problem is more properly described as
an Orienteering Problem instead of TSP. His method solves
the Orienteering Problem as an intermediate step in planning.
This enables the determination of path to impact the plan of
which rocks should be visited. Pedersen, et al. use the same
Orienteering Problem approach as Smith for rover mission
activity planning [21].

Methods that combine view and path planning, as discussed
above, generally do not take time into account, except to
minimize the total time required to complete the task. For pit
modeling, minimizing total task time is less important than
ensuring that the time at which each view is captured provides
acceptable illumination conditions.

The Orienteering Problem and Extensions

The Orienteering Problem (OP) is similar to the Traveling
Salesman Problem, but in this case the agent does not have
to visit every goal position, and each goal position provides
some reward [22]. The agent seeks to maximize reward while
minimizing path length.

Vansteenwegen, Souffriau, and Oudheusden provide a survey
of approaches to the OP and several of its extensions [23].
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In the formulation discussed by Vansteenwegen et al., the
starting and ending nodes for the orienteering problem are
fixed. Each node has an associated reward, and each edge
has an associated travel time. The goal is to maximize
reward within a time budget, Tmax. Methods for solving the
Orienteering Problem often involve finding a feasible path,
and then doing a local search to improve the feasible path. An
extension of the OP is the Team Orienteering Problem (TOP),
where instead of a single agent there are multiple agents and
each one has a route [23].

While the OP is similar to the view trajectory planning for pit
modeling, the view trajectory planning problem also has time
constraints on when goal positions can be visited to achieve
rewards. This is more similar to the Orienteering Problem
with Time Windows (OPTW), in which each node can only
be visited during a certain time window. Methods to solve
the OP do not always translate well to the OPTW [23]. In
particular, swapping nodes with other nodes is complicated
by the fact that they may not have equivalent time windows.
Karbowska-Chilinska and Zabielski use a genetic algorithm
to solve the OPTW [24].

Planning for pit modeling could be formulated as an OPTW,
with nodes being a combination of position and coarse time
divisions, and the time window being defined over the coarse
time division. The value of each node would then be depen-
dent on whether the illumination was good on the patches
visible from a node’s position at that node’s time. However,
the OPTW does not reflect the fact that the value of a node can
change based on what nodes were visited previously, which
can happen when visits to previous nodes have collected all
the images necessary to model a particular terrain patch.

The Team Orienteering Problem with Time Windows
(TOPTW) combines the TOP with the OPTW. Since this
pit modeling work only considers a single rover, the team
extensions of OP are not relevant. The TOPTW has also been
applied to solve multi-day OPTW problems, assuming that
the agent must start and end from pre-determined locations
each day. This makes sense when considering the agent as a
tourist, salesman, or delivery man. He would have to return
to a hotel or to the depot each day. It makes less sense in the
case of a planetary rover which will spend the night wherever
it happens to be when night falls and continue the next day
where it left off.

Mennell introduces the Sequence Dependent Team Orienteer-
ing Problem (SDTOP) [25]. In this problem, the value of
a route depends on the order in which nodes were visited.
For example, if node 5 is visited before node 7, a value of
10 would be added to the score, but if node 7 were visited
before node 5, a value of 15 would be added. Planning for
pit modeling differs from the SDTOP in that, while absolute
time matters, the sequence in which two nodes were visited
does not affect the overall value, though it may affect the total
distance traveled.

The Target Visitation Problem (TVP) was introduced by
Grundel and Jeffcoat, and further analyzed by Arulselvan,
Commander, and Pardalos [26], [27]. In the TVP, nodes
have different values that is somewhat time dependent. The
example given is a surveillance task for an aerial vehicle
where intelligence suggests that a terrorist may be in a set
of different locations, but there are different probabilities of
him being in each location. Thus, the value is greater if the
high-probability locations are visited first, but all locations
should be checked, and there is a desire to minimize distance

traveled. Arulselvan, Commander, and Pardalos use a hybrid
genetic algorithm to solve the TVP. Like for the SDTOP,
ordering matters in the TVP, where it does not in planning
for pit modeling.

In the Multi Constrained Team Orienteering Problem with
Time Windows, visits to each node also have specified du-
rations and entry fees. Nodes are also sorted into cate-
gories, and once a given number of nodes in a category
have been visited, additional nodes in that category are not
valuable. Sylejmani, Dorn, and Musliu use the Tabu Search
metaheuristic to solve the MCTOPTW [28]. Tabu search
uses a number of moves that can potentially improve the
path. “Tabu” memory keeps track of moves that cannot be
performed for a certain number of iterations, which tends
to diversify the search. They also use a technique of fast
constraint checking to ensure that constraints (time windows,
nodes per category, etc.) are not violated. In view trajectory
planning for pit modeling, there is a desired number of
views for each patch. The problem could potentially be
formulated as an MCTOPTW, but this would require that each
position-time-view combination be a separate node, which
may not be desirable. Not only would this greatly increase the
number of nodes in the problem, but if a rover is at a given
position, it makes sense to capture all the views associated
with that position (or at least all the views of unseen patches
or those that meet constraints with prior views of a patch),
and the MCTOPTW does not capture this connection between
patches viewable from the same position. The MCTOPTW
also does not handle the idea of relative constraints on angles
between nodes.

In the generalized orienteering problem (GOP), the total score
is a nonlinear function of the vertices visited [29], [30].
Specifically:

Z =

m∑
g=1

Wg

[
{
∑
i∈P

[Sg (i)]
k} 1

k

]
(1)

This function sums over all nodes in the path P . Each
node has a set of scores Sg in different categories. The
example given is a tourist planning a trip who wants to
see attractions that each have some score for natural beauty,
cultural heritage, shopping, etc. Given that the tourist has
seen several attractions with high scores in natural beauty,
additional attractions with high natural beauty may not be as
interesting anymore. Each tourist may have his or her own
weightings, Wg for each type of score. This function tends
to level off in score for each category as the number of nodes
visited increases with high scores in that category increases.
Wang, Golden and Wasil use a genetic algorithm to solve the
GOP [29].

Planning view trajectories for pit modeling is similar to the
GOP. Given position-time nodes with scores determined by
the patches visible from that location, if a patch has already
been viewed many times, it should not increase the node’s
score. However, there is an additional level of dependency
between nodes in planning view trajectories for pit modeling.
If the goal is to get stereo depth reconstruction for each patch,
then there are two views required for each patch. After the
first view of a patch, the second view would be of value if
it meets the relative view angle constraints for stereo or no
value if it did not. The GOP also does not include time
windows. This work thus seeks to extend the GOP and
the MCTOPTW and define a new problem, the Orienteering
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Problem with Time Windows and Inter-Node Dependencies
(OPTWIND), that handles inter-node dependencies such as
relative constraints on view or illumination angle for a patch
viewable from multiple nodes.

Model Building

To plan for model building, it is important to understand how
illumination and view angles affect model quality. This work
looks at stereo reconstruction from two or more images. For
stereo reconstruction, very similar view angles to a target
will produce poor-quality depth information, but it may be
difficult to match features between images from very different
view angles. So for stereo, there are both minimum and
maximum constraints on relative view angle to get a good
quality reconstruction. Matching features between images
can also fail if the illumination angles in the two images are
too different.

Stereo reconstruction has been done from orbit in planetary
missions. In this case, the difference in view needed for stereo
is achieved by moving and tilting the spacecraft. One stereo
reconstruction method for orbital images is the open-source
Ames Stereo Pipeline [31], [32]. Stereo from orbit is similar
to the consideration of stereo in this pit modeling work,
and can be contrasted against parallel stereo that achieves a
difference in view based on camera separation perpendicular
to the view direction. The larger the distance is between the
cameras and the view target, the wider this separation, or
baseline, must be. Stereo between multiple rover positions
is used for pit modeling because of the cross-pit viewing
distance.

The modeling of Victoria Crater by the MER Opportunity is
an example of how planetary rovers currently model terrain
features [33], [34]. Waypoints for Opportunity were chosen
by operators on Earth instead of being planned autonomously.
Both MER and MSL carry multiple stereo pairs of cameras,
so stereo (over a short baseline) is commonly used. Bundle
adjustment is also used for these rovers, to register image sets
over the course of a rover trajectory [35].

Depending on the desired spatial resolution of the final
model, a pit model could be composed of many images. An
effective pipeline for modeling large features with large num-
bers of images on Earth consists of open source Bundler [36],
[37] for bundle adjustment, and CMVS/PMVS multi-view
stereo software [38], [39]. Their work has been demonstrated
in reconstruction of tourist destinations like the Colosseum in
Rome and the Piazza San Marco in Venice using thousands of
tourist photos. This and several other sparse reconstruction
(structure from motion or SFM) and dense reconstruction
methods will be examined in Section 7.

3. FORMULATING THE OPTWIND PROBLEM
The formulation of the Orienteering Problem with Time
Windows and Inter-Node Dependencies (OPTWIND) starts
from the standard formulation of the Orienteering Problem
with Time Windows (OPTW) [23]. The variable xij = 1 if
the agent visits node ni immediately before node nj . The
distance and time between nodes ni and nj are dij and τij ,
respectively. For each node ni, σi is the start of the visit to
that node. M is a large constant. The time window for ni is

the interval [Oi, Ci].

N∑
j=2

x1j =

N−1∑
i=1

xiN = 1 (2)

N−1∑
i=1

xik =

N∑
j=2

xkj ≤ 1 (3)

N−1∑
i=1

N∑
j=2

dijxij ≤ Dmax (4)

σi + τij − σj ≤M (1− xij) ;∀i, j = 1, ..., N (5)

Oi ≤ σi (6)

σi ≤ Ci (7)

Constraints in eq. 2 ensure that the path starts and ends at
predetermined start and end locations. Constraints in eq. 3
ensure that the path is continous, and each node is visited no
more than once. Eq. 4 ensures that the path does not exceed
a maximum distance. In some work with the orienteering
problem, this is expressed as a maximum time instead of a
maximum distance, but time is also constrained by absolute
time windows, and if the distance that could be traveled in
between the beginning of the first time window and the end
of the last is greater than the desired maximum distance, then
distance should be constrained independently. Eq. 5 ensures
that the timeline is consistent; in other words, if the agent
travels from node ni to node nj , then arrival time at nj cannot
be less than the arrival time at ni plus the travel time between
ni and nj . The indicator yi is also added, where yi = 1 if
node i is in the path, and zero otherwise.

In OPTW, each node has a fixed score, and the objective is
to optimize the sum of the scores over all nodes in the path.
Similar to the Generalized Orienteering Problem (GOP), each
node has not just one score in the OPTWIND formulation, but
scores in several categories, and the total score for the path is
a function of the per-category scores for each node.

In OPTWIND, the score for each node ni is the sum of the
scores across all categories, {p1, ..., pk}. In each category,
pk, there are one or more ratings {βik1, ..., βikz, ..., βikZ},
where each βikz is an integer. The score in a given category
for a given node is dependent on whether the ratings for that
category meet absolute constraints for ratings and relative
constraints with ratings in the same category for nodes pre-
viously visited. If constraints are met, the score for the node
in that category is Sk, up to a total of Sk,max for that category
across all nodes.

The total value for the route that the problem seeks to opti-
mize is then:

K∑
k=1

min{Sk,max,

N∑
i=1

[Ska (ni, pk) {f ({n1, ..., ni}, pk)+

r ({n1, ..., ni}, pk)}yi]}
(8)
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The expression

a (ni, pk) {f ({n1, ..., ni}, pk) + r ({n1, ..., ni}, pk)} (9)

evaluates to a binary value that indicates whether or not the
score Sk can be earned. The function a indicates whether the
absolute rating constraints are met. The function r indicates
whether two or more observations of a category meet relative
rating constraints. The absolute and relative constraint func-
tions a and r are defined using absolute thresholds Az,min
and Az,max, and relative thresholds Rz,min and Rz,max for
each type of rating.

a (ni, pk) =

Z∏
z=1

[min [max (βikz −Az,min, 0) , 1] ∗

min [−min (βikz −Az,max, 0) , 1]]

(10)

r ({n1, ..., ni}, pk) = max
{ i−1∑

j=1

[
yj ∗

Z∏
z=1

(
min [max (|βikz − βjkz|−Rz,min, 0) , 1] ∗

min [−min (|βikz − βjkz|−Rz,max, 0) , 1]

)]
, 1
}

(11)

The function f indicates whether this is the first node on the
path for which pk meets absolute rating constraints.

f ({n1, ..., ni}, pk) =

min
{
−min

 i∑
j=1

(a (ni, pk))− 1, 0

 , 1} (12)

View Trajectory Planning for Pit Modeling as an OPTWIND

To formulate view trajectory planning for pit modeling as an
OPTWIND, one node is created for each pair (ti, li). The
time windows are calculated as:

Oi = tiT and Ci = (ti + 1)T (13)

where T is the length of a coarse time division. One category
is defined for each target patch. The rating β1 for each patch
is the view angle from the rover position li in node ni, and
the rating β2 is the illumination angle at time ti in node ni.
Additional β values could be added to represent vertical view
angles. Distances dij between nodes ni and nj are computed
as d(li, lj), and times τij are computed from dij using the
rover speed. This application also relaxes the constraint in
eq. 2 to only specify a start position and not an end position.

4. INPUTS
Prior models of pit geometry can be as simple as cylinders
with a given radius and height. A cylinder crudely represents

(a) Satellite view (b) Prior model

Figure 3. Prior model example for projection of outline,
using King’s Bowl pit. (Left image from [41], right image
created by the authors)

(a) Satellite view (b) Prior model

Figure 4. Prior model example for satellite stereo recon-
struction, using a pit in the Moon’s Lacus Mortis region. (Left
image from [42], right image created by the authors.)

pit walls, and pit floor may or may not be considered. Pit
diameter can be measured from satellite imagery, and pit
depth can be estimated from the length of shadows. Many
natural pits of ultimate interest here are highly irregular. For
these irregular pits, the outline of the pit can be projected
down vertically to the estimated pit depth. Fig. 3 illustrates
this concept. The pit was viewed from above using Google
Earth, and the outline of the pit was traced and saved as
latitude and longitude values in a KML file [40]. The outline
was then projected down to the estimated depth of the pit to
create a prior model.

If multiple satellite images (at the right viewing angles) are
available, then a stereo model can be constructed from a pair
of images. Fig. 4 illustrates this concept. Images from the
Lunar Reconnaissance Orbiter’s Narrow Angle Camera of a
target pit in the Moon’s Lacus Mortis region were used with
Ames Stereo Pipeline [31], [32] to create a stereo model.
Because this pit has a ramp on one side, stereo will be
much more effective than the projection of outline method
in representing its shape.

Time information used in view trajectory planning consists
of the length of daylight - for the Moon this is 14.77 Earth
days, or about 354 hours - as well as start and end times for
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the modeling mission, and a desired number of divisions to
consider for the mission period. This last is based on the in-
sight that, while illumination changes continuously with time,
over the time scales required to take a single view, which
may be less than a second up to a minute or more for high
dynamic range imaging, illumination does not change that
much. The number of time divisions should be set such that
within each time division, the illumination can be considered
essentially the same for purposes of planning. This could
mean that the illumination angle on a patch of terrain changes
less than some threshold (5 degrees, 20 degrees, etc.), or
that the set of illuminated patches does not change more than
some threshold, which in turn depends on patch size.

The illumination trajectory is computed from time informa-
tion and a given latitude. The sun is assumed to travel 360
degrees relative to the pit in one day length, in a plane that is
latitude degrees from vertical. One light vector is computed
for the center of each time division.

Restrictions on rover travel include a maximum distance
traveled in a single time division and a minimum distance that
a rover must maintain from the pit edge. The upper bound
on maximum distance traveled is set by the maximum rover
speed, but the value is set much lower for this work to account
for other un-modeled mission considerations.

5. INPUT PROCESSING

Figure 5. Coarse pit discretization with 2 vertical and 6
angular patches. Potential rover positions are shown as green
circles.

A coarse prior model of a pit can be divided into a set
of surface patches, where the normal of a surface patch is
determined from a plane fit to the coarse model points in the
local neighborhood of the patch. The patch normal can then
be used to determine the view angle to the patch from various
positions and the illumination angle on the patch at various
times. Fig. 5 shows an example patch tiling for a simple
cylindrical pit with no visible floor. Fig. 6 shows an example
tiling for the King’s Bowl pit. The size of the patches could
be fixed, or it could vary over the pit surface. In this work,
a fixed patch size was used. The size of the patch should be
smaller than the footprint of a camera view to ensure that the
camera view can cover the patch.

For any pit-modeling task, there will be a start and stop
date/time. The sun direction can then be computed from

Figure 6. A tiling of the coarse model of King’s Bowl pit
into surface patches

ephemeris data. This is done using SPICE [43]. For simplic-
ity, it is assumed that the sun is a directional light source. This
sun direction and the patch normals can be used to determine
patch illumination angles, and patch positions combined with
a coarse prior model of the pit can be used to do ray-tracing to
determine shadowed patches [44]. Fig. 7 shows an example
of a lighting computation for a cylindrical pit model.

Figure 7. Simple geometric with 5 vertical and 20 angular
divisions and 12 time divisions, showing a change in lighting
over time. Red indicates that a patch is lit, and blue indicates
that it is not lit.

A set of positions for the rover to consider while planning,
and a set of path lengths between these positions are gener-
ated. These path lengths could be straight-line distances, or,
given a digital elevation map (DEM), paths could be planned
automatically, avoiding high slopes and obstacles. For the
simple pit models in Fig. 5 and Fig. 7, the green circles
represent potential rover positions.

For King’s Bowl, positions were generated at roughly 8 m
increments along both the east and west side of the pit (see
Fig. 8). Because a digital elevation map was not part of the
prior model, paths between adjacent positions were manually
estimated (avoiding cracks and holes visible in overhead
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Figure 8. Overhead view of Kingsbowl pit. Potential po-
sitions are marked by yellow push-pins. (View from Google
Earth [40]. Base image from [41])

imagery) and measured using Google Earth [40]. Paths are
assumed to be bi-directional. Dijksra’s algorithm is run on a
graph with position nodes and path-length edges to compute
the distance from each position to each other position [45].

To determine the visibility of patches from various rover
positions, one can either generate rover positions and views
and test which patch(es) they can see (generate and test) or
determine for each patch which rover positions can see it
(synthesis). Although synthesis methods for visibility com-
putation are an intriguing option for view trajectory planning,
for the King’s Bowl pit experiments, camera positions were
chosen from among a set of positions already marked from a
prior experiment (see Fig. 8, so the generate and test method
was used.

To determine if patches are visible in a given view from a

rover position, ray tracing is done from the camera position
[44]. The number of rays is selected based on the size of a
patch and the spread between adjacent rays at the maximum
expected viewing distance. The distance between ray tips at
that distance should be somewhat less than the patch size. For
patches that are intersected by rays, the four vectors between
the camera center and the patch corners are checked against
the camera field of view to ensure that the entire patch can be
seen. Two dimensional view angles, computed by comparing
the direction of vectors from the camera to the patch centers
with the patch normals, are stored for each valid position-
patch pairing.

6. VIEW TRAJECTORY PLANNING
A view trajectory plan consists of a sequence of times, rover
postions, and patches to be viewed. When the end-goal
of planning is to have a high-quality model of a pit, plans
are evaluated by the quality of the resulting model. The
quality of the resulting model cannot be evaluated without
first executing the plan, capturing the images, and building
the model, so when comparing potential plans, an estimate of
model quality is used.

The estimate of model quality is based on lighting and view
angle constraints. For an image of a patch to add value to the
model, it must be lit within the illumination angle threshold.
An absolute view angle threshold is imposed, and images at
more oblique angles do not add value. If stereo is the assumed
method of 3D reconstruction, both minimum and maximum
constraints on relative view angle are used. For each patch, a
score of 0.5 is given for a single image that meets constraints.
A score of 1 is given if there is a pair of views that meet
both absolute and relative constraints. The sum of per-patch
scores is computed, and the model value is the percentage
of the maximum possible score that this sum achieves. This
takes into account that some patches may never be visible, or
may never be sufficiently lit, reducing the maximum possible
score in these cases.

Two algorithms for solving the OPTWIND are used in ex-
periments. One takes a greedy approach and takes any
views that meet absolute and relative view and lighting angle
constraints. The other is the timewindow algorithm. Before
this algorithm starts, it is assumed that time has been coarsely
divided, based on significant changes in availability or value
of positions, similar to the start time, end time, and time
divisions. The algorithm first computes a value for each
position at each time, as the sum of potential values for each
target type available from that position, weighted by one
over the total length of time during which that target type
is available from any position. Positions within each coarse
time division are then ordered by this value. Starting with
the top position for each time division, the algorithm tries
to find a feasible trajectory that includes one position per
time division and meets distance constraints, proceeding to
lower-valued positions for a given time if necessary. From
the feasible trajectory, it tries to add positions, ordered by
the difference in the set of targets available (the larger the
difference, the better), within each coarse time division and
remaining within the distance constraints. It does a local
search to reduce the trajectory distance. It then determines
which targets do not have the desired number of views, and
tries to add positions, ordered by the number of target types
they meet constraints for, and thus improve value. The
insert by set difference, reduce trajectory distance, and insert
to satisfy constraints steps are repeated until the change in
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Figure 9. Example of a planned view trajectory for a simple cylindrical pit. Black asterisk indicates starting position. Magenta
asterisks indicate rover positions, and cyan lines indicate views.

Figure 10. Patches viewed under the greedy plan. Patches
are colored by number of views. Magenta asterisks indicate
the rover positions in this plan.

paths is lower than some specified threshold, or a specified
maximum number of iterations is reached.

Patches viewed in the view trajectory plans for both the
greedy and the timewindow method are shown in Fig. 10 and
Fig. 11.

7. MODEL BUILDING
Model building takes images captured according to a view
trajectory plan and combines them into a detailed model.
First, the relative positions of the cameras are determined in
a structure-from-motion step, and then a dense reconstruction
is computed given those positions. Here we evaluate several
existing modeling methods, a combination of structure-from-
motion and dense reconstruction algorithms, to determine
which is most effective on data from an analog field site.

Camera reconstructions of the King’s Bowl pit were evaluated

Figure 11. Patches viewed under the timewindow plan.
Patches are colored by number of views. Magenta asterisks
indicate the rover positions in this plan.

using a set of images taken at positions E14 at time 17:19
and E13 at time 16:11 (shown in Fig. 8). Images were taken
with a Canon EOS Rebel T3 DSLR camera with a 50mm
lens. Reconstructed models from images were compared to a
ground truth LiDAR model of the site.

The pipelines evaluated were the Multi-View Environment
(MVE) in [46], VisualSFM [47], [48] for structure-from-
motion and MVE for dense reconstruction, VisualSFM
for structure-from-motion and PMVS/CMVS [49], [50] for
dense reconstruction, OpenMVG [51] for structure-from-
motion and MVE for dense reconstruction, Bundler [52],
[53], Bundler for structure-from-motion and PMVS/CMVS
for dense reconstruction, and Bundler for structure-from-
motion and MVE for dense reconstruction. The combination
of approaches can be seen in Table 1.

OpenMVG implemented two methods for computing global
rotation from a list of relative estimates. The first method em-

10



ployed Martinec’s algorithm detailed in [54] and the second
method employed an algorithm developed by Chatterjee, et.
al. detailed in [55]. OpenMVG1 in Table 1 refers to the first
method and OpenMVG2 refers to the second method.

Fuhrman et. al. developed the Multi-View Environment
(MVE) in [46] that takes images as input and outputs a
dense point cloud. Their algorithm includes structure-from-
motion, multi-view stereo reconstruction, and dense point
cloud generation from multi-scale data. The structure-from-
motion and dense point cloud generation are run together
on the input data and compared to other structure-motion-
algorithms combined with the MVE dense point cloud gen-
eration. The full reconstruction pipline can be run using the
MVE software. Alternatively, MVE can take as input sparse
reconstruction from another structure-from-motion software
and output a dense reconstruction.

The Clustering Views for Multi-View Stereo (CMVS) [50]
and Patch-based Multi-view Stereo [49] algorithms of Fu-
rukawa, et. al. were also evaluated to generate dense
point clouds from the camera images. The CMVS algorithm
produces a dense set of rectangular patches that cover the
surface being rceconstructed by enforcing local photometric
consistency and global visibility constraints. Each image is
associated with a regular grid of cells and, if possible, at least
one patch p in every cell is reconstructed. The photometric
consistency between a reference image R(p) and the set of
images T (p) is measured by projecting a patch into the two
images and computing the normalized cross correlation. The
maximum score is used to compute an estimate of the position
c(p) and surface normal n(p) using the following equation.

Ñ(p) =
1

|T (p)|−1
∑

I∈T (p),I 6=R(p)

N(p,R(p), I)

Each of the methods reconstructed a camera model of the pit
of varying quality. The quality of the model was measured
by comparing to ground truth collected by a LiDAR. Each
camera model was coarsely registered to the LiDAR model
using handpicked points. Following the coarse registration,
a fine registration was computed using the Iterative Closest
Point (ICP) algorithm [56], [57], [58].

In order to accurately compare the LiDAR ground truth model
to the camera models generated by the pipelines, the vertices
in the models were voxelized using a density of 0.2 meters.
The models could then be directly compared to determine the
statistics in Table 1.

An analysis of the results concludes that the structure-from-
motion component of Bundler or VisualSFM should be com-
bined with the dense reconstruction of MVE. The other meth-
ods (i.e. OpenMVG, CMVS/PMVS, and the structure-from-
motion component of MVE) produced significantly poorer
results. However, it must be noted that these combinations
of methods were run on a single dataset with fairly consistent
lighting conditions. Better results may be achieved with these
pipelines using different datasets and lighting conditions.

Table 1. Dense Reconstruction Pipelines

Structure
from
motion

Reconstruction Coverage % camera val-
ues not found
in ground truth

MVE MVE 5.3 75.7
VisualSFM MVE 20.8 42.4
VisualSFM CMVS/PMVS 3.8 23.5
OpenMVG1 MVE 2.9 92.4
OpenMVG2 MVE 2.9 91.4
Bundler — 14.5 24.5
Bundler CMVS/PMVS 3.6 22.9
Bundler MVE 22.4 45.0

8. RESULTS
Two field experiments in pit model reconstruction were ex-
ecuted. For the first, a “full set” of images was used. This
means that for evenly spaced points around the pit rim, a set
of all possible views was collected (spaced at approximately
half field-of-view angle rotations in pan and tilt) from the left-
most pan angle that viewed pit wall to the right-most pan
angle that viewed pit wall. In the second experiment, a set
of images from a planned view trajectory was used for model
reconstruction.

Model Reconstruction: “Full View Set”

For a skylight pit in the Indian Tunnel lava tube cave, images
were collected from tripod-mounted DSLR cameras. 205
images total were collected from 14 stations near the southern
end of the Indian tunnel Skylight. Tripod stations were
spaced with a target distance of roughly 4.5 meters. Stations
were adjusted as needed to accomodate hazardous terrain, and
precise measurements of station positions were not done. At
each station, the tripod was manually leveled by eye using
an integrated bubble level. The tripod was adjusted sch that
the camera tilt was zero. The camera was panned to the left-
most ege of the pit (in the current view). Additional views
were taken by tilting down by 22.5 degrees to 45 degrees and
panning by 30 degrees until hte right-most edge of the pit was
reached.

Two Canon EOS Rebel T3 DSLR cameras with manually
adjustable zoom lenses, 18mm focal length, and field of
view of approximately 45 degrees vertical and 63 degrees
horizontal were used to take images of the skylight. Each
image was taken with auto-exposure using center-weighted
average metering.

Other camera parameters were fixed for all images, including
ISO 100, aperture F8 and white balance of 5200K (daylight).

A 3D model of the pit was constructed using Bundler for bun-
dle adjustment and CMVS/PMVS2 for dense reconstruction.
Figure 12 shows a view of the colorized point cloud created
using this method. A mesh model is generated by applying a
Poisson reconstruction.

Model Reconstruction: Planned View Trajectory

This experiment was conducted with King’s Bowl data. A
Canon EOS Rebel T3 DSLR camera with a 50mm fixed focal
length lens was used. Because of the smaller field of view,
and the larger size of the King’s Bowl pit, the view trajectory
planning did not have access to the “full set” as in the previous
experiment.
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Figure 12. Side view of colorized point cloud model
created from dense reconstruction from CMVS/PMVS2. The
skylight pit is in the center, and the segments of the lava tube
cave can be seen extending on either side.

Figure 13. Mesh model of a skylight pit in Indan Tunnel
cave created with Bundler, CMVS-PMVS, and Poisson Re-
construction

Fig. 14 shows the reconstruction for the greedy algorithm’s
view trajectory plan. Fig. 15 shows the reconstruction for the
timewindow algorithm’s view trajectory plan.

Figure 14. A 3d reconstruction from a planned set of images
of King’s Bowl, using the greedy planning method

9. SUMMARY
This work has modeled pits in natural terrain on Earth that
are analogs for planetary pits. Methods have been developed
for converting a real-world pit modeling problem into a view
trajectory planning problem and outputting planned image
locations, directions, and times. This end-to-end pipeline
has been demonstrated for the King’s Bowl pit. This work
presents preliminary results for a portion of a field dataset
of pit images. Image-based reconstruction methods were

Figure 15. A 3d reconstruction from a planned set of images
of King’s Bowl, using the timewindow planning method

compared and promising and unpromising methods were
identified.

10. CONCLUSIONS AND FUTURE WORK
Preliminary results indicate that the combination of Visu-
alSFM/MVE and Bundler/MVE for SFM/dense reconstruc-
tion are most promising for this pit modeling application
due to the substantial model coverage they provide. The
Bundler/CMVS-PMVS combination, while displaying low
coverage on the comparison dataset, has produced good
results on other field datasets for pits. One interesting point
to note is that the Indian Tunnel dataset, while similar in size
to the comparison dataset, contains more camera positions,
and these positions are relatively evenly spaced around the
pit to be modeled. In the long term, reconstruction of a patch
using fewer images is advantageous in a planetary setting, due
to severe limitations in on-board processing power and data-
rate to Earth. Combinations using OpenMVG for SFM did
not prove at all promising for the pit modeling application
due to the low coverage and the very high percentage of
reconstructed points outside the range of the ground truth
model.

This paper reports an early analysis of a part of a large dataset
for King’s Bowl; future work will perform further processing
of this field data and may provide more comprehensive mod-
els for the pit. Future areas of investigation include a more
in-depth analysis of parameters used for planning, such as
absolute and relative view angle, and relative lighting angle.

This work looked at the pipeline for view trajectory planning,
from inputs to model building. While two planning methods
were applied, they were not analyzed in depth. Future
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work will more fully investigate the planning portion of the
pipeline. This includes comparing methods over multiple test
cases, examining a wider range of planning methods, (such
as those from vehicle routing or AI planning and scheduling
work), and investigating ways in which the 3D reconstruction
of contiguous sets of patches is given higher value so that one
large model can easily be produced, instead of many small
ones.
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