
Online Planning for Quadrotor Teams in 3-D Workspaces via
Reachability Analysis On Invariant Geometric Trees

Arjav Desai and Nathan Michael

Abstract— We consider the kinodynamic multi-robot plan-
ning problem in cluttered 3-D workspaces. Reachability analysis
on position invariant geometric trees is leveraged to find kino-
dynamically feasible trajectories for the multi-robot team from
potentially non-stationary initial states. The key contribution
of our approach is that a collision-free geometric solution
guarantees a kinodynamically feasible, safe solution without
additional refinement. Simulation results with up-to 40 robots
and hardware results with 5 robots suggest the viability of the
proposed approach for online planning and replanning for large
teams of aerial robots in cluttered 3-D workspaces.

I. INTRODUCTION

A. Motivation

Safe and responsive real-world multi-robot deployments
in application domains such as coverage [13], target search
and tracking [23], search and rescue [1], [28], construction
[16] as well as building clearance (Fig 1) necessitate an
online kinodynamic planning and replanning framework that
can efficiently cater to changes in operator intent (e.g.
assignment of new goals over the course of the deployment)
and spatiotemporal changes in the workspace (e.g. due to the
presence of dynamic obstacles [20]). In this work, we seek
to develop a scalable and responsive planning framework
for generating dynamically feasible and collision-free motion
plans for large teams of quadrotors in known and static
workspaces in response to online changes in goal locations.

B. Related Works

Two primary challenges are associated with the online
kinodynamic multi-robot planning problem. First, the high
dimensionality of the composite search space [26], [27] re-
stricts direct applicability of standard search [7] or sampling-
based [12] methods. State-of-the-art methods [11], [29]
typically search for a geometric solution followed by an
iterative refinement procedure that converts the geometric
paths into dynamically feasible, time-parameterized poly-
nomial trajectories. The iterative refinement procedure is
a computational bottleneck for large team sizes due to an
increase in the number of dynamic feasibility evaluations and
collision checks. This restricts the use of these approaches
in scalable, and responsive online planning frameworks.

Second, replanning for agile systems like quadrotors in-
volves planning from non-stationary initial states making
the motion planning and coordination sub-problems ad-
ditionally challenging since paths in collision cannot be

The authors are affiliated with the Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA, USA. {arjavdesai, nmichael}
@cmu.edu. We gratefully acknowledge support from industry.

Fig. 1: (Left) Building clearance as a motivating application domain
where teams of robots operate and coordinate in close proximity to
assess and identify threats in a cluttered 3-D space. (Right) Online
planning with 5 crazyflie quadrotors in a cluttered workspace.

naively assigned time-offsets as in [29] to resolve conflicts.
Several recent works have addressed the problem of motion
planning and coordination from non-stationary initial states.
Approaches include MAPF [5], [25] guided sampling-based
[14], [15] methods, optimization-based [10], [19], [22], [24]
methods, and search-based methods using motion-primitives
[17], [30] and state lattices [4], [21]. We restrict our dis-
cussion to search- and sampling-based techniques due to
the high computational complexity of optimization-based
methods. Sampling-based approaches, although probabilis-
tically complete, are not well suited for online multi-robot
planning frameworks primarily due to the cost associated
with the large number of sample evaluations for dynamic
feasibility and safety. Search-based methods using motion-
primitives [17], [30] have received significant attention in
the context of single robot replanning; however, reasoning
over induced state-space discretization (as obtained using
motion-primitives) can be less beneficial in the context of
coordination due to reasons illustrated in Fig. 2. In this
work, we argue that maintaining a distribution of higher-
order derivatives over a fine geometric lattice (or an invariant
geometric tree) improves coordination while maintaining dy-
namic feasibility and avoiding the computationally expensive
refinement procedures common in geometric methods.

C. Contributions

The contributions of this paper are as follows:
• Existing geometric methods, (A) do not guarantee a

kinodynamically feasible solution if a geometric solu-
tion is found [17] and (B) computationally expensive

iteration 1 - success iteration 2- failed

lower priority higher priority

p3

p2

p1p1

p2

p3

no feasible
primitives

feasible infeasible

Fig. 2: Example of limitations of motion primitive based approaches
in the context of coordination of differentially-constrained systems.
Two robots need to swap positions. Lower priority robot has no
feasible motion-primitives in the second iteration and cannot stay in
position due to non-stationary underlying state i.e. the robot reaches
an inevitable collision state.

refinement is needed for safe hardware execution [29].
Our approach eliminates dependence on refinement by
leveraging offline reachability analysis on position in-
variant geometric trees (Sec. III-B) which guarantees a
kinodynamically feasible and collision-free solution if
a collision-free geometric solution is found.

• A collision checking method (Sec. III-C) which exploits
the invariance of geometric trees to efficiently remove
colliding edges (6× 104 edges in the order of ms).

• Simulation results with teams of up-to 40 robots
and hardware results with 5 robots in cluttered 3-D
workspaces (Sec. IV).

II. PROBLEM FORMULATION

A. Notation and Assumptions

R and N denote the set of real and natural numbers respec-
tively. S represents a set and M, v, and s denote matrices,
vectors, and scalars respectively. |S| refers to the cardinality
of the set. The robots in this work are differentially flat [18],
jerk-controlled [9] quadrotor systems. The 3-D workspace is
static and known a priori.

B. Problem Statement

Let W be the set of points describing the 3-D workspace.
The set of occupied points is given by Wocc and the set of
free points is given by Wfree i.e. W := Wfree ∪Wocc. The
set of initial and final states are given by I ∈ Rp×n and
F ∈ Rp×n respectively. Here, p denotes the dimensionality
of the robot state and n represents the number of robots in the
team. We seek to generate time-parameterized polynomial
trajectories [18] for each robot in the team that are dynam-
ically feasible with accelerations and jerks below specified
limits, collision-free, and terminate within the goal region.
Additional requirements include scalability (large teams of
robots) and responsiveness (low online planning times) in
cluttered 3-D workspaces.

III. APPROACH

This section is organized as follows:
• Sect. III-A discusses the environment representation.

• Sect. III-B, discusses the proposed approach for offline
reachability analysis on position invariant geometric
trees and the procedure for online inference of the k-
step reachability of arbitrary initial states.

• Sect. III-C discusses the collision checking approach.
• Sect. III-D presents the single robot planning algorithm

that is extended to the multi-robot case in III-E.

A. Environment Representation

We use a voxel grid representation of the environment. A
sparse roadmap of the environment is computed during the
offline preprocessing step using the SPARS2 algorithm [8].
The sparse roadmap is used in the single (Sect. III-D) and
multi-robot planners (Sect. III-E) for cost-to-go evaluation.
The SPARS2 algorithm is chosen due to its low memory
requirements and competitive solution quality compared to
the traditional roadmap based methods (PRM [3]).

B. Invariant Geometric Tree Reachability Analysis

Definition 1. An edge e is defined as a line segment
connecting two geometric points in R3. The initial and
terminal points of the edge are represented by e(0) and e(1)
respectively. The length of the edge is denoted by l(e).

Definition 2. A dynamically feasible edge is defined as an
edge such that for some initial higher-order derivative sinit at
e(0), there exists a non-empty set of higher-order derivatives
Sfinal at e(1) and the trajectories connecting sinit to Sfinal

along e do not violate differential constraints.

Definition 3. A curvature constrained edge is defined as an
edge such that for some initial higher-order derivative sinit at
e(0), there exists a non-empty set of higher-order derivatives
Sfinal at e(1) such that the trajectories connecting sinit to Sfinal

along e are entirely contained within a cuboidal bounding
box, B, of length l(e) and a fixed width and height, oriented
along the edge e.

Definition 4. A reachable edge is defined as an edge that
is dynamically feasible and curvature constrained.

Definition 5. A lattice E is defined as a set of edges that
start at the origin.

Definition 6. A k-step tree T is obtained by propagating a
lattice in an obstacle-free workspace for k steps. Since each
node in a tree has a single parent, the tree can be defined by
the tuple T = (VT ,aT , cT), where VT is the set of vertices
in R3, aT ∈ {0, 1}|VT | is the boolean valued adjacency (0
denotes unreachable) vector, and cT ∈ R|VT | is the cost
vector where cT (i) is the the cost-to-come to the ith vertex.

Definition 7. A reachable k-step tree is defined as a tree
such that for some initial higher-order derivative sinit at the
root state, if aT (i) = 1, the path from the root to the ith
vertex is composed of reachable edges.

Proposition 1. Let S be a distribution of higher-order
derivatives at the root vertex of an invariant k-step tree
given by T = (V,a, c). Let Tsi = (V,asi , c) represent the
reachable k-step tree of si ∈ S. The reachable k-step tree

of the entire distribution, TS , is given by TS = (V,aS , c)
where aS =

∑
∀i, bitwise

asi . We refer to this as the merge-tree

operation. For the ith vertex, if aS(i) = 1, the path from
the root to the ith vertex is composed of reachable edges
and there exists at least one si ∈ S for which this path is
reachable. The proof follows from the fact that each vertex
of a tree can have only one parent.

Here, we discuss generation of reachable k-step trees for
arbitrary states in the robot’s state-space. Exploiting position
invariance of geometric trees, we define the state-space of
the robot to be the space of higher-order derivatives defined
by the set S where each element of S is a six dimensional
vector [vx, vy, vz, ax, ay, az]T Here, v denotes velocity and
a denotes acceleration. Our approach relies on offline reach-
ability analysis of (a) a finely discretized axes decoupled
state space on axis aligned edges of various lengths (Sect.
III-B.1) and, (b) coarsely discretized axes coupled state space
on invariant geometric k-step trees (Sect. III-B.3).

1) Decoupled Reachability Analysis: Since trajectory
generation for quadrotors is decoupled in the cardinal di-
rections x, y, and z [9], we construct axis decoupled sets
Sx, Sy , and Sz , where each element of these sets is a
two dimensional vector of velocity and acceleration in the
respective cardinal direction. We sample edges of various
lengths li ∈ L oriented along the positive x axis Fig. 3a.

We evaluate the reachability of the axis aligned edges
in L (Def. 4) for all pairs of initial and final states drawn
from Sx, Sy , and Sz . If the time-parameterized, single axis
polynomial trajectory resulting from a pair of sampled states
is dynamically feasible and curvature constrained (Fig. 3b),
the cost, i.e. total trajectory jerk as in [9], is stored in the
cost matrix corresponding to the cardinal direction (cost is
infinity if the edge is unreachable).

For each li ∈ L, cost matrices Cx ∈ RSx×Sx , Cy ∈
RSy×Sy and Cz ∈ RSz×Sz are stored. Note that reachability
along the y, and z cardinal directions is independent of the
edge length as illustrated in Fig. 3c. Thus, cost matrices Cy ,
and Cz need to be computed only once.

The edges in L are oriented in 3-D space to create a
geometric lattice (Def. 5) and this lattice is propagated for
k-steps to construct a geometric tree, T .

2) Reachability Inference for Oriented Edges: The decou-
pled reachability information is used to infer the reachability
of arbitrarily oriented edges without explicit evaluation.
Given an edge e of length l at an arbitrary orientation in
3-D space, let Rab,Rba ∈ R3×3 be the rotation matrices
to align e with the positive x-axis and back, respectively.
Further, let sinit ∈ R6 be the higher-order derivatives at e(0).
The reachability (Def. 4) of the edge can be inferred without
explicit evaluation using the following procedure:

1) Rotate the velocity and acceleration components of sinit
using Rab and find the closest representative states in
Sx, Sy , and Sz .

2) Using the representative states, query the cost matrices
corresponding to l to obtain the set of terminal states

Reachable

k-step
evaluationSubsampling

Unreachable

Online
Inferenceone-step

evaluation merge tree

e

time
y

feasible

c

d

b

x

time

feasibleinfeasible

a

x
y edge

bounding
box

infeasible

Unknown

Fig. 3: (a) An edge of length l (in blue) aligned with the positive
x axis. The pink rectangle represents the 2-D projection of the
bounding box B of length l and width wy . (b,c) Reachability
evaluation for decoupled axes. (d) Offline coupled k-step evaluation
of subsampled states and use in (e) online k-step tree inference for
arbitrary states (e.g. snew) drawn from robot’s feasible state space.

along each cardinal axis i.e. Sfinal
x , Sfinal

y , and Sfinal
z

3) If Sfinal
x , Sfinal

y , and Sfinal
z are non-empty sets, the edge

is deemed reachable (Def. 4).
4) The terminal states are obtained by taking a cartesian

product Sfinal = Sfinal
x ×Sfinal

y ×Sfinal
z and applying the

Rba rotation matrix to the velocity and acceleration
components of Sfinal.

3) Coupled Reachability Analysis on k-Step Trees: Let S ′
be a set of higher-order derivatives constructed by taking a
cartesian product of subsampled sets S ′x, S ′y , and S ′z . We
note that |S ′x × S ′y × S ′z| � |Sx × Sy × Sz| (Fig. 3d).
In practice, S ′ is constructed via uniform sampling of the
velocity space (Sect. IV). The reachability of an invariant
k-step tree (Def. 6) is evaluated for each si ∈ S ′ using the
decoupled reachability information in Sect. III-B.1 and the
inference procedure described in Sect. III-B.2. The boolean
valued adjacency vectors ai (Def. 5) corresponding to each
si ∈ S ′ are precomputed and stored.

4) Online Inference of Reachable k-step Trees: Let snew ∈
R6) denote an arbitrary state in the robot’s feasible state
space, S. The k-step reachability of snew is inferred (Fig.
3e) using the following procedure:

1) If snew lies in the set S ′ (constructed in Sect. III-B.3),
reuse precomputed k-step tree.

2) If not, apply the reachability inference method in
Sect. III-B.2 to identify the reachable edges and the
corresponding terminal states in the one step lattice,
E , (Def. 5) used for constructing the k-step tree.

3) For each reachable edge, identify the subset of terminal
states which lie in S ′ (defined in Sect. III-B.3) and
merge the corresponding k − 1 step trees using the
merge-tree operation (Prop. 1).

The subsequent subsection describes the proposed colli-
sion checking procedure.

1

2 3

4

5

6 7

8 {4,5,6,7,8}

Local Environment
Voxel Grid

k-step Tree
Voxel Grid

Identify edges
in collision

4

8

7

Generate new
reachable tree

a b c d

e f g

{4}

Fig. 4: (a) Cartesian projection of 2-step geometric tree where the
pink and blue edges represent steps 1 and 2 respectively. (b) Voxel
grid representation of tree. (c,d) Associating the minimal set of
edges with each occupied voxel. (e) Element-wise multiplication
and (f) identification of tree voxels in collision with the environ-
ment. (g) Removing conflict edges from the tree and generating
true reachable set of tree vertices using Dijkstra’s algorithm [7].

C. Collision Checking

Let Ts = (V,as, c) (Def. 6) denote the reachable k-step
tree for initial higher-order derivatives s, with the root vertex
at position p ∈ Wfree. While all reachable edges of Ts are
dynamically feasible (Def. 2) and curvature constrained (Def.
3), some edges might be in collision with Wocc. We seek to
modify as to yield an adjacency vector which corresponds to
a tree with dynamically feasible, curvature constrained, and
collision-free edges.

1) Offline Processing of Geometric Trees: We exploit
the invariance of the k-step tree to generate a voxel grid
representation of the geometric tree with the same voxel
resolution as that of the environment. Voxels that intersect
with the edges of the tree and the bounding box B around the
edge (as in Def. 3) are marked as occupied as shown in Fig.
4(a-d). Additionally, with each occupied voxel we associate
the minimal set of edges that intersect with it, e.g., if edges
leading to the ith and jth tree vertex intersect with a specific
voxel and the jth vertex is a child of the ith vertex, only the
ith vertex (or the edge leading to the ith vertex) is associated
with the voxel. This voxel to edge mapping is stored as a
dictionary data structure.

2) Online Collision Checking: A 3-D slice from the
environment voxel grid centered around the position of the
robot is extracted. The dimensions of this 3-D slice are the
same as that of the the voxel-grid of the k-step tree. We
perform an elementwise multiplication operation between the
two grids and identify all voxels that are both in intersection
with the geometric tree and occupied by the workspace
obstacles. The minimal set of edges corresponding to each
occupied voxel are queried (Fig. 4: e-g) from the dictionary
data structure created in Sect. III-C.1 and the corresponding
vertices are marked as unreachable in as. The true set of all
reachable vertices is obtained by running Dijkstra’s algorithm
[7] from the root of the tree. In multi-robot planning, a time
dimension is added to the voxel grid of the invariant k-step
tree for collision checking with geometric paths of other
robots in the team.

D. Single-Robot Planner

The proposed single-robot planning strategy (Alg. 1) incre-
mentally constructs a collision-free geometric path (Alg. 1,
lines 8, 13) and maintains the distribution of possible higher-
order derivatives at the intermediate geometric vertices in the
form of a directed graph which we call the derivative graph,
denoted GS (Alg. 1, lines 9, 13). Once a geometric path is
found to the goal, higher-order derivatives are assigned to the
geometric vertices by searching for the shortest path in the
derivative graph (Alg. 1, line 17). The shortest path in the
derivative graph corresponds to an assignment of derivatives
which minimizes the total trajectory jerk.

Algorithm 1 Find a feasible and safe trajectory ξ, given the
initial and final positions, pinit and pfinal and derivatives, sinit
and sfinal respectively.

1: procedure SINGLEROBOTPLANNER(pinit, pfinal, sinit, sfinal)
2: construct k-step tree, T from sinit and pinit (III-B.4)
3: Sactive ← sinit, P ← ∅, GS ← ∅
4: while iter < max iter do
5: incorporate workspace constraints in T using (III-C)
6: goal found ← is goal state (pfinal, sfinal) in T
7: if goal found then
8: append k-step path, Pk , to goal to P
9: update GS by propagating Sactive along Pk

10: break
11: select intermediate goal in T using roadmap
12: append k-step path, Pk, to intermediate goal to P
13: update GS by propagating Sactive along Pk

14: update Sactive with derivative set at Pk(k)
15: construct T from Sactive (Prop. 1), set pinit ← Pk(k)

16: if goal found then
17: assign derivatives by finding shortest path in GS
18: return trajectory, ξ [9].

E. Multi-Robot Planner

A prioritized (hence, incomplete), cooperative planning
strategy (similar to [25]) is used for the multi-robot case.
In each iteration, a priority ordering O is computed for the
robot team and k-step paths are computed sequentially for
each robot in a manner similar to the single-robot planner
described in Algorithm 1 (lines 5-16). Once collision-free
geometric paths are found, derivatives are assigned to the
geometric vertices and trajectories are computed for each
robot in the team. We refer the reader to [6] for additional
details on the single and multi-robot planners.

Algorithm 2 Find a feasible and safe polynomial trajectory
set, Ξ, given the initial and final states I and F respectively.

1: procedure MULTIROBOTPLANNER(I , F)
2: while iter < max iter do
3: O ← assign priority ordering
4: for ∀i ∈ O do
5: Algorithm 1: lines 5-15
6: if all robots at goal then
7: assign derivatives to each robot’s geometric path
8: return trajectory set, Ξ

IV. EVALUATION

A. Implementation Details and Experiment Design

All algorithms are implemented in Julia [2] and evaluated
on a Lenovo Thinkpad with a Intel 4-Core i7 CPU and 16
GB RAM. The proposed approach is evaluated by means
of four studies. Studies use a geometric tree of depth 2
and 63253 edges. We use a subsampled set of higher-order
derivatives S ′ (defined in Sect. III-B.3) with |S ′| = 729. For
constructing S ′, we sample velocities along each cardinal
direction (velocity limits {−2, 2} m/s) with a resolution of
0.5 m/s. The acceleration along the three cardinal directions
for these samples is set to 0 m/s2. The offline reachability
data structures (cost matrices, k-step trees of states in S ′)
utilize 1.5 gigabytes of memory.
• Sect. IV-B experimentally verifies the dynamic feasibil-

ity and safety of our approach.
• Sect. IV-C compares our planning representation (in-

variant geometric trees) to motion-primitives using com-
putation times, success rates, and solution quality as the
comparison metrics.

• Sect. IV-D studies the effect of map size and obstacle
density on the success rates and planning times of our
approach and Sect. IV-E evaluates the computational
complexity.

• Sect. IV-F verifies the viability of our approach for
hardware execution.

B. Dynamic Feasibility and Safety

We conduct 20 multi-robot planning experiments (ran-
domly generated start and goal states) for team sizes of
1, 10, 30, and 40 robots in a cluttered 3-D workspace
(voxel resolution 0.25 m). For each experiment, if a set
of collision-free geometric paths are found, we evaluate the
resulting trajectories for violation of differential and collision
constraints. The distribution of maximum accelerations and
minimum clearance distances for each experiment are shown
in Fig. 5. Results verify that the proposed approach generates
motion plans that are dynamically feasible and collision-free.

C. Comparison with Motion-Primitive Based Approaches

We compare the performance of the our planning repre-
sentation, i.e., invariant geometric trees, to motion-primitives,
which are used in state-of-the art single-robot kinodynamic
planning and replanning approaches like [17], [30]. 20
experiments are conducted for team sizes of 1, 10, 30,
and 40 robots in the random forest environment like the
one shown in Fig. 6. Success rate, computation times, and
solution cost are used as the comparison metrics. We use the
motion-primitive based single-robot planner as proposed in
Zhou et al. [30] (with 729 primitives per node expansion)
in our multi-robot formulation (Alg. 2) (abbreviated as MP
in Table I). For a fair comparison, we do not rely on the
SPARS2 roadmap for cost-to-go evaluation for intermediate
goal selection but instead use a heuristic function (Euclidean
distance to goal). The results are summarized in Table I. The
motion-primitive based approach outperforms our approach

Fig. 5: Tests employ robots of radius 0.1 m and an acceleration
limit of 7 m/s2. Sub-figures show the distribution of maximum
accelerations and minimum inter-robot clearance distances. Results
verify the claim that if collision-free geometric paths are found, the
resulting trajectories are dynamically feasible and collision-free

TABLE I: Success rate, computation time, and solution quality of
our planning representation compared to motion-primitives (dis-
cretized control-input space) for various team sizes (n). Proposed
representation achieves higher success rates and comparable com-
putation times compared to motion-primitives.

Robots 1 10 30 40
Approach Our MP Our MP Our MP Our MP
Success % 100 100 100 70 85 25 75 20

Mean 28.8 15.1 269.5 155.9 807.2 475.0 1082.0 626.9Cost
(m2s−3) Std. Dev 5.8 3.2 20.4 10.8 40.6 12.5 65.9 17.1

Mean 0.25 0.1 2.1 1.5 7.7 6.3 12.0 10.6Time
(s) Std. Dev 0.14 0.1 0.2 0.5 1.2 1.4 3.0 3.1

in the single-robot case. However, in the multi-robot case,
our approach achieves significantly higher success rates.
The computation times are comparable to that of MP. Our
approach incurs a higher cost (approximately twice) than
that of motion-primitive based approach since the trajectories
are constrained to remain within spatial lattices. The high
success rates of our approach is primarily attributed to
availability of (1) multi-step geometric paths—preventing
deadlocks and reciprocal dances common in myopic planning
strategies—and (2) reasoning over the distribution of higher-
order vertices at the intermediate geometric vertices (Prop.
1) that gives rise to diverse set of spatial options that is
not possible in motion-primitive based approaches where
candidate trajectories typically remain within a dynamically
feasible cone (Fig. 2).

D. Effect of Map Size and Obstacle Density

We study the effect of map size and obstacle density on
the success rate and computation times of the our approach.
Tables II and III summarize the results. Increasing the map
size (keeping obstacle density constant) primarily affects the
computation times due to the increase in the number of
planning iterations. Increasing the obstacle density decreases
the success rate due to the availability of a fewer number of
geometric edges during the geometric search step. However,
it should be noted that the proposed approach is capable
of successfully computing motion plans in high congestion
scenarios (e.g. 75% success rate with 30 robots in a 10 ×
10× 10 m3 cluttered workspace).

E. Computational Complexity

The complexity of the approach is found to be greater
than O(n) but less than O(n2) for up-to 40 robots (Fig. 7).
n refers to the team size. The scaling of computation times

per iteration for collision checking are shown in Table IV.
Low planning times suggest viability of the approach for
online use in application domains mentioned in Sect. I-A.
TABLE II: Effect of map size on the success rate and computation
times of the proposed approach. Map size primarily affects the
computation time due to increase in number of planning iterations.

Small Size
10× 10× 10 m3

Medium Size
20× 10× 10 m3

Large Size
50× 10× 10 m3

Robots Success % Time (s) Success % Time (s) Success % Time (s)
1 100 0.1 100 0.2 100 0.6
10 100 0.6 95 1.4 95 5.5
30 75 2.9 75 7.5 70 20.1
40 40 4.8 50 11.1 55 37.6

TABLE III: Effect of obstacle density on the success rate and
computation times. Obstacle density adversely affects the success
rate due to fewer available geometric edges. The computation times
increase since clutter forces robots to deviate from straight-line
paths leading to an increase in the number of iterations.

Low Density
8 Obstacles

Medium Density
16 Obstacles

High Density
24 Obstacles

Robots Success % Time (s) Success % Time (s) Success % Time (s)
1 100 0.2 100 0.3 100 0.3
10 95 1.4 100 2.5 90 2.6
30 75 7.5 70 8.0 70 11.3
40 75 11.1 45 13.1 40 18.28

a b c

d

Fig. 6: (a) Final trajectories of 30 robots in a dense random forest
environment (high density environment Tab. III). Colored cylinders
represent start states, and spheres represent goal regions. (b) Robots
avoiding static clutter in the environment. (c) Collision avoidance in
high congestion regions. (d) Trajectories terminate in goal regions.

Fig. 7: Scaling of computation times with number of robots in a
cluttered 10×10×10m3 workspace. The computational complexity
of the proposed approach is higher than O(n) but less than O(n2).

TABLE IV: Scaling of computation time per iteration for collision
checking components using approach proposed in Sect. III-C with
team size n. Computation times reported in seconds. Tests use a tree
with 63253 edges spanning a 12×12×12m3 cubic volume centered
at the robot position. Collision checking with static obstacles (voxel
resolution 0.25 m) scales linearly with n. Inter-robot collision
checking scales (approx.) quadratically with n.

Component n = 1 n = 10 n = 30 n = 40
Collision check (static) 0.007± .002 0.09± 0.008 0.29± 0.039 0.40± 0.069
Collision check (inter-robot) - 0.38± 0.093 2.17± 1.34 3.51± 1.63

a

b

c

dd e
Fig. 8: Online planning with 5 crazyflie quadrotors in a cluttered 3-
D environment in response to online changes in goal locations. The
goal locations are selected to be random points inWfree. Subfigures
a, b, and c show one online planning trial. Cubes indicate goal
locations and spheres indicate the current robot positions. 10 online
planning trials were conducted. Across the 10 trials, the maximum
acceleration was found to be 5 m/s2 and minimum clearance
distance was found to be 0.22 m thus satisfying constraints of
7 m/s2 (acceleration) and 0.2 m (clearance). Subfigure d shows
paths being computed through tight spaces and subfigure e shows
robots operating in close proximity while avoiding collisions.

F. Hardware Results

We evaluate our approach with 5 crazyflie quadrotors in a
cluttered 3-D workspace in a motion capture arena. Results
(Fig. 8) verify that proposed approach generates plans that
can be safely executed by differentially constrained systems.

V. CONCLUSION AND FUTURE WORK

This work presented an approach for kinodynamic multi-
robot trajectory planning and coordination in 3-D workspaces
via leveraging offline reachability analysis on invariant geo-
metric trees. Low planning times (approximately 1 second for
10 robots) and high success rates in high congestion scenar-
ios suggest viability of the proposed approach in centralized
online planning frameworks for critical real-world applica-
tions such as building clearance (Fig 1). As future work, we
intend to use this approach within a distributed framework
with additional considerations such as state uncertainty and
communication delays. Additionally, we intend to extend the
planning approach to consider dynamic workspaces.

REFERENCES

[1] J. L. Baxter, E. K. Burke, J. M. Garibaldi, and M. Norman. Multi-
Robot Search and Rescue: A Potential Field Based Approach, pages
9–16. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[2] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman.
Julia: A fast dynamic language for technical computing. arXiv preprint
arXiv:1209.5145, 2012.

[3] Valérie Boor, Mark H Overmars, and A Frank Van Der Stappen. The
gaussian sampling strategy for probabilistic roadmap planners. In
ICRA, pages 1018–1023, 1999.

[4] Marcello Cirillo, Tansel Uras, and Sven Koenig. A lattice-based
approach to multi-robot motion planning for non-holonomic vehicles.
In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 232–239. IEEE, 2014.

[5] Liron Cohen, Tansel Uras, TK Satish Kumar, Hong Xu, Nora Ayanian,
and Sven Koenig. Improved solvers for bounded-suboptimal multi-
agent path finding. In IJCAI, pages 3067–3074, 2016.

[6] Arjav Desai, Matthew Collins, and Nathan Michael. Efficient kin-
odynamic multi-robot replanning in known workspaces. In 2019
International Conference on Robotics and Automation (ICRA), pages
1021–1027. IEEE, 2019.

[7] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[8] Andrew Dobson and Kostas E Bekris. Improving sparse roadmap
spanners. In 2013 IEEE International Conference on Robotics and
Automation, pages 4106–4111. IEEE, 2013.

[9] Markus Hehn and Raffaello D’Andrea. Quadrocopter trajectory
generation and control. IFAC proceedings Volumes, 44(1):1485–1491,
2011.

[10] Wolfgang Hönig, TK Satish Kumar, Liron Cohen, Hang Ma, Hong
Xu, Nora Ayanian, and Sven Koenig. Multi-agent path finding with
kinematic constraints. In ICAPS, pages 477–485, 2016.

[11] Wolfgang Hönig, James A Preiss, TK Satish Kumar, Gaurav S
Sukhatme, and Nora Ayanian. Trajectory planning for quadrotor
swarms. IEEE Transactions on Robotics, 34(4):856–869, 2018.

[12] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt. Institute of
Electrical and Electronics Engineers, 2011.

[13] Tushar Kusnur, Shohin Mukherjee, Dhruv Mauria Saxena, Tomoya
Fukami, Takayuki Koyama, Oren Salzman, and Maxim Likhachev.
A planning framework for persistent, multi-uav coverage with global
deconfliction. arXiv preprint arXiv:1908.09236, 2019.

[14] Duong Le and Erion Plaku. Multi-robot motion planning with
dynamics guided by multi-agent search. In IJCAI, pages 5314–5318,
2018.

[15] Duong Le and Erion Plaku. Multi-robot motion planning with
dynamics via coordinated sampling-based expansion guided by multi-
agent search. IEEE Robotics and Automation Letters, 4(2):1868–1875,
2019.

[16] Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. Construction
of cubic structures with quadrotor teams. Proc. Robotics: Science &
Systems VII, 2011.

[17] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar.
Search-based motion planning for quadrotors using linear quadratic
minimum time control. In Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on, pages 2872–2879. IEEE,
2017.

[18] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory genera-
tion and control for quadrotors. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 2520–2525. IEEE,
2011.

[19] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar. Mixed-integer
quadratic program trajectory generation for heterogeneous quadrotor
teams. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 477–483. IEEE, 2012.

[20] Derek Mitchell and Nathan Michael. Persistent multi-robot mapping
in an uncertain environment. In 2019 International Conference on
Robotics and Automation (ICRA), pages 4552–4558. IEEE, 2019.

[21] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially
constrained mobile robot motion planning in state lattices. Journal of
Field Robotics, 26(3):308–333, 2009.

[22] James A Preiss, Wolfgang Hönig, Nora Ayanian, and Gaurav S
Sukhatme. Downwash-aware trajectory planning for large quadrotor
teams. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on, pages 250–257. IEEE, 2017.

[23] Cyril Robin and Simon Lacroix. Multi-robot target detection and
tracking: taxonomy and survey. Autonomous Robots, 40(4):729–760,
2016.

[24] D Reed Robinson, Robert T Mar, Katia Estabridis, and Gary Hewer.
An efficient algorithm for optimal trajectory generation for hetero-
geneous multi-agent systems in non-convex environments. IEEE
Robotics and Automation Letters, 3(2):1215–1222, 2018.

[25] David Silver. Cooperative pathfinding. AIIDE, 1:117–122, 2005.
[26] Kiril Solovey and Dan Halperin. On the hardness of unlabeled

multi-robot motion planning. The International Journal of Robotics
Research, 35(14):1750–1759, 2016.

[27] Kiril Solovey, Oren Salzman, and Dan Halperin. Finding a needle
in an exponential haystack: Discrete rrt for exploration of implicit
roadmaps in multi-robot motion planning. In Algorithmic Foundations
of Robotics XI, pages 591–607. Springer, 2015.

[28] Yulun Tian, Katherine Liu, Kyel Ok, Loc Tran, Danette Allen,
Nicholas Roy, and Jonathan P How. Search and rescue under the
forest canopy using multiple uavs. arXiv preprint arXiv:1908.10541,
2019.

[29] Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar.
Goal assignment and trajectory planning for large teams of inter-
changeable robots. Autonomous Robots, 37(4):401–415, 2014.

[30] Boyu Zhou, Fei Gao, Luqi Wang, Chuhao Liu, and Shaojie Shen. Ro-
bust and efficient quadrotor trajectory generation for fast autonomous
flight. IEEE Robotics and Automation Letters, 4(4):3529–3536, 2019.

	Introduction
	Motivation
	Related Works
	Contributions

	Problem Formulation
	Notation and Assumptions
	Problem Statement

	Approach
	Environment Representation
	Invariant Geometric Tree Reachability Analysis
	Decoupled Reachability Analysis
	Reachability Inference for Oriented Edges
	Coupled Reachability Analysis on k-Step Trees
	Online Inference of Reachable k-step Trees

	Collision Checking
	Offline Processing of Geometric Trees
	Online Collision Checking

	Single-Robot Planner
	Multi-Robot Planner

	Evaluation
	Implementation Details and Experiment Design
	Dynamic Feasibility and Safety
	Comparison with Motion-Primitive Based Approaches
	Effect of Map Size and Obstacle Density
	Computational Complexity
	Hardware Results

	Conclusion and Future Work
	References

