
Efficient Kinodynamic Multi-Robot Replanning in Known Workspaces

Arjav Desai, Matthew Collins, and Nathan Michael

Abstract— In this work, we consider the problem of online
centralized kinodynamic multi-robot replanning (from poten-
tially non-stationary initial states) and coordination in known
and cluttered workspaces. Offline state lattice reachability
analysis is leveraged to decouple the planning problem into
two sequential graph searches—one in the explicit geometric
graph of the environment and the other in the graph of the
higher-order derivatives of the robot’s state—in a manner such
that the intermediate vertices of a safe set of geometric paths
are guaranteed to have a feasible assignment of higher-order
derivatives. Without additional iterative refinement procedures,
the resulting time parameterized polynomial trajectories are
dynamically feasible and collision-free. Planning results with
up to 20 robots in two and three dimensional workspaces
suggest the suitability of the proposed approach for multi-robot
replanning in known environments.

I. INTRODUCTION

An efficient online planning or replanning methodology
is a critical requirement for safe, responsive, and robust real
world multi-robot deployments. The need to replan typically
stems from invalidation of existing plans due to partial
knowledge of the environment (e.g., unmapped regions or
dynamic obstacles) or in scenarios that necessitate online
changes in the goal locations (e.g., monitoring [17] or the-
atrical [4] applications). This work considers the problem of
multi-robot replanning from potentially non-stationary initial
states, specifically, in response to online changes in goal
locations in a known and static workspace.

In contrast to planning from stationary states, non-
stationary initial states increase the complexity of both the
motion-planning and the coordination problem. Planning
dynamically feasible and collision-free trajectories from non-
stationary states necessitates reasoning about the higher-
order derivatives of position, increasing the dimensionality of
the search space. In this case, geometric planning followed
by iterative refinement as in [21] may restrict trajectories
to infeasible homotopies. The coordination problem is made
additionally challenging as robots cannot be assigned time
offsets as in [27] in order to avoid path conflicts.

The state-of-the-art approaches in kinodynamic motion-
planning can be classified into search-based [16], sampling-
based [13], [14], or optimization-based methods [18], [22].
For multi-robot motion-planning, search and sampling-based
methods [2], [5], [9], [15], [27] typically use coupled [24],
decoupled [8], [25], or hybrid [26], [28] graph-theoretic
multi-agent path-finding algorithms or variants of the RRT

The authors are affiliated with the Robotics Institute, Carnegie Mel-
lon University, Pittsburgh, PA, USA. {arjavdesai, mcollin1,
nmichael} @cmu.edu

We gratefully acknowledge support from DOE (DE-EM0004067) and
industry.

Fig. 1: Trajectories for 10 robots in a three dimensional warehouse
environment from non-stationary initial states. (Top) Avoiding inter-
robot collisions. (Bottom) Avoiding obstacles in warehouse. Rep-
resentative video: https://bit.ly/2IzeDde

algorithm [12] to find an initial set of collision-free geometric
paths. These geometric paths are then iteratively refined to
generate feasible and safe trajectories for the multi-robot
team. While the complexity of decoupled discrete methods
[25], [27] scales well with the number of robots, state-of-
the-art graph-theoretic multi-robot planning approaches such
as [27] typically assume stationary initial states. This limits
their applicability in scenarios that necessitate replanning
from non-stationary states due to a loss of guarantees on
feasibility and safety. The authors in [15] tackle this issue
by exploring alternate geometric routes in case the original
routes are deemed infeasible or unsafe; however, the evalu-
ation of each candidate control input for dynamic feasibility
and collisions with other robots restricts the applicability
of this approach in online planning scenarios. Optimization-
based methods [18], [20], [22] do not impose any restrictions
on the initial state and find the optimal solution for the plan-
ning problem in a continuous representation of the composite
state space. However, high computational complexity renders
these approaches impractical for online use.

This paper presents a graph-theoretic kinodynamic plan-
ning and coordination approach for multi-robot teams in
known and cluttered workspaces without assuming stationary
initial states. We leverage offline state lattice reachability
analysis to find geometric paths in the explicit graph of the
environment in a manner that ensures a feasible assignment
of higher-order derivatives at intermediate vertices of the
geometric paths. The resulting polynomial trajectories are
guaranteed to be dynamically feasible and collision-free
without additional refinement. Within the context of the state-
of-the-art in kinodynamic multi-robot motion-planning, the
proposed methodology can be used as (A) a standalone
planning or replanning strategy in sparsely cluttered envi-

https://bit.ly/2IzeDde

ronments (Fig. 1) for certain classes of dynamical systems,
(B) a computationally efficient method for generating infor-
mative guides in obstacle-rich environments for sampling-
based methods [15], and (C) for seeding optimization-based
methods [18], [22].

The paper is organized as follows. Section II describes
the problem statement. The proposed approach is detailed in
Section III and evaluated in Section IV. The conclusion and
future work is discussed in Section V.

II. PROBLEM STATEMENT

R and N denote the set of real and natural numbers
respectively. S represents a set and M, v, and s denote
matrices, vectors, and scalars respectively. |S| refers to the
cardinality of the set S.

We consider the homogeneous, labelled [30] multi-
robot kinodynamic motion-planning problem in a known
workspace defined by the tuple (I,F ,W), where I ∈ Rp

and F ∈ Rp denote the set of initial and final states
respectively and p ∈ N is the dimensionality of the robot’s
state space. W is the known workspace. Wfree and Wocc
denote the set of points in the free and occupied spaces
respectively, i.e., W =Wfree ∪Wocc.

We seek to generate a time parameterized polynomial
trajectory set, Ξ, for the multi-robot team such that all
trajectories in Ξ are dynamically feasible (requirement R1),
collision-free (requirement R2), and terminate at the goal
state (requirement R3).

III. APPROACH

This section is organized as follows:

1) Sect. III-A describes the environment representation.
2) In Sect. III-B, the one step reachability for a discrete

set of higher-order derivatives, S, is evaluated within
a geometric lattice structure [19].

3) In Sect. III-C, the one step reachability information is
used to construct k-step position invariant reachability
trees; one for each state si ∈ S. At a high level, reacha-
bility trees encode the local connectivity between states
in S induced from an initial state in an obstacle-free
workspace over k time steps.

4) Sect. III-D presents the two-stage single robot planning
algorithm. The first stage leverages the offline reacha-
bility information to concurrently find a geometric path
in the explicit graph of the environment and construct
a graph in the space of the higher-order derivatives
of position (we refer to this graph as the derivative
graph). In the second stage, higher-order derivatives
are assigned to the vertices of the geometric path
by searching for a path in the derivative graph that
minimizes a predefined cost metric.

5) In Sect. III-E, a prioritized, cooperative planning strat-
egy (similar to [25]) is used to extend the single robot
planning algorithm for the multi-robot case.

A. Environment Representation

A kL connected state lattice structure (e.g., an 8-connected
lattice as shown in Fig. 2) is translated across the workspace
W to create an explicit geometric workspace graph GW =
(VW , EW). VW represents the set of vertices within free
space and EW denotes the set of edges. The adjacency matrix
A ∈ R|VW |×|VW | encodes the weighted connectivity between
the vertices in VW along the edges in EW . The start (Iipos)
and goal (F i

pos) positions of the ith robot are assumed to lie
within the same connected component [29] of GW .

B. Offline Reachability Analysis

Let S denote the discretized feasible set of higher-order
derivatives in the state-space of the robot. For an acceleration
controlled system, S consists of feasible velocities; for a
jerk controlled system, S consists of feasible velocities and
accelerations.

For each initial state si ∈ S and for each edge in the
lattice, |S| time parameterized polynomial trajectories of a
fixed time duration, tfixed, are generated from si to the final
state sj , ∀j ∈ {1, . . . , |S|}.

Each polynomial trajectory is evaluated for violation of
differential (constraint C1) and curvature constraints (con-
straint C2). The curvature constraints are imposed by a
rectangular convex region of fixed width around each edge in
the lattice (Fig. 2). While constraint C1 ensures dynamic fea-
sibility, constraint C2 is leveraged in the multi-robot planner
(Sect. III-E) for efficient collision checking. C = {C1, C2}
denotes the cumulative constraint set.

For each si ∈ S, a cost matrix C ∈ R|kL+1|×|S| and an
adjacency vector a ∈ {0, 1}kL+1 is maintained. The cost
matrix captures the cost of transitioning from state si to sj
(∀j ∈ {1, . . . , |S|) along an edge in the lattice structure. Let
ξkij be the polynomial coefficients of the trajectory connecting
si to sj along the kth edge. The cost matrix is updated as
follows:

C(k, j) =

{
c(si, sj), if feval(ξ

k
ij , C) = 1

∞, if feval(ξ
k
ij , C) = 0

(1)

A

B

D

C

Fig. 2: Polynomial trajectories are generated from a fixed state si ∈
S to sj ∈ S ∀j ∈ {1, . . . |S|} within the geometric lattice structure.
Trajectories that violate differential constraint C1 (A) or curvature
constraint C2 (B) are deemed infeasible. The trajectory costs are
stored in the C matrix and the one step adjacency is stored in the
boolean valued vector a (D), where reachable vertices are denoted
in black.

where c(si, sj) is the trajectory cost function and feval →
{0, 1} checks the polynomial trajectory ξkij for violation
of the constraint set C. The total control effort along the
polynomial trajectory (e.g., acceleration, jerk, etc. depending
on the control input for the system) is used as a measure of
cost. The one step adjacency that an initial state si induces
within the lattice structure is stored in the boolean valued
adjacency vector a.

A library Li stores the cost matrix C and the adjacency
vector a for each si ∈ S. We denote the set of all libraries
by L = {L1, . . . , L|S|}.

C. Offline k-Step Forward Reachability Tree Construction

A position invariant k-step reachability tree is constructed
for each library in the library set by evaluating its forward
reachability over a k-step horizon in an obstacle-free un-
bounded workspace.

Each reachability tree Ti is defined by the tuple
(ATi ,RTi). The matrix ATi ∈ R|VT |×|VT | is the geometric
adjacency matrix that state si induces in an obstacle-free
environment over k time steps. Here, VT represents the
origin-centered time-indexed reachable position vertices in
an obstacle-free workspace over k time steps assuming a
stationary initial state. RT ∈ {0, 1}|VT |×|S| denotes the
boolean valued reachability matrix that maps the vertices
in VT to reachable states in S given the initial (root) state
sinit. The set of all the k-step reachability trees is denoted by
T = {T1, . . . , T|S|}.

Fig. 3 illustrates the rationale behind the k-step reachabil-
ity evaluation. Let si ∈ S be the higher-order derivatives
associated with the current position x of the robot and
Asi

T be the corresponding k-step adjacency. Let Ax
W be the

adjacency matrix of the k-step graph of the workspace W
centered around x. While all the edges in Ax

W are collision-
free, some edges might be dynamically infeasible given si
and constraint C1. The adjacency matrix, Ax, corresponding
to the k-step graph centered at x that contains dynamically
feasible and collision-free edges is obtained by taking the
element-wise product of Ax

W and Asi
T :

Ax = (Ax
W �Asi

T)ij . (2)

Using (2) allows for efficiently obtaining the set of dy-
namically feasible and safe geometric edges over multiple
time steps in the single and multi-robot planners.

D. Single Robot Planner

An iterative, receding horizon planning strategy is used
for the single robot planner. Let xinit and xfinal denote the
initial and final positions and sinit and sfinal denote the initial
and final higher-order derivatives. Algorithm 1 describes the
single robot planning procedure.

In each iteration, a k-step tree Tactive is constructed from
the k-step trees corresponding to all the available (active)
libraries (Lxcurr

active) at the current position vertex. In the first
iteration Tactive corresponds to the k-step tree of sinit (line 4).
In each iteration, VTactive is translated by the robot’s current

Fig. 3: The k-step graph in Rd with dynamically feasible and
collision-free edges, Ax, can be obtained by taking the element-
wise product of Ax

W (which encodes the collision constraints) and
Asi

T (which encodes the feasibility constraints).

position into the world frame and the workspace constraints
are incorporated into ATactive (line 7) using (2).

The adjacency and reachability matrices of Tactive are
queried to check if the goal state (xfinal, sfinal) is reachable
within the k-step horizon (line 8). If the goal is reachable,
the minimum cost path [6] is found from the root node and
the geometric planning terminates (line 10).

If the goal state is unreachable within the k-step horizon,
a hierarchical graph GH = (VH , EH) is constructed that
considers the dynamic feasibility and the workspace collision
constraints for the first k time steps and only the workspace
collision constraints after the kth step (line 16). The vertex in
VH after the kth time step that corresponds to xfinal is chosen
as the goal vertex and the shortest path is found from the root
node. The first k steps of this path are retained, providing a
partial geometric path Piter. If no path exists, the algorithm
reports failure and terminates.

Once a partial geometric path Piter is found for the
planning iteration, the active libraries Lactive at the root vertex
are propagated along the edges of the partial path to update
a directed derivative graph GD = (VD, ED) (line 12, 18).
Lactive is reinitialized to include the active libraries associated
with the last vertex of the partial path (line 20). The vertices
of GD are the time-indexed, higher-order derivatives, and
the edges encode the connectivity between these higher-order
derivatives over successive time instances. The edge weights
between pairs of vertices are queried from the relevant cost
matrices computed in section III-B.

Instead of selecting a library from the active library set
after each planning iteration, all the k-step trees from the
libraries in Lactive are merged (line 21). Since the adjacency
matrix of the k-step trees encode the dynamics of the
underlying state, the resultant tree (Tactive) will maintain
all the higher-order information from the active libraries
used for its construction. This biases the construction of
the geometric tree in a direction of dynamic feasibility,
ensuring the existence of a continuous kinodynamic path
if a geometric solution can be found. The merge operation
updates RTactive and ATactive according to (3).

Algorithm 1 Find a dynamically feasible and safe trajectory
ξ, given the initial and final positions, xinit and xfinal and
derivatives, sinit and sfinal respectively.

1: procedure SINGLEROBOTPLANNER(xinit, xfinal, sinit, sfinal)
2: initialize empty path P
3: initialize empty derivative graph GS
4: set Lactive to Linit and Tactive to Tinit
5: path found ← False
6: while iter < max iter do
7: incorporate workspace constraints in Tactive using (2)
8: goal found ← is goal state (xfinal, sfinal) is in Tactive
9: if goal found then

10: Piter ← find shortest path to goal
11: path found ← True
12: GS ←update derivative graph using Piter,L
13: append Piter to P
14: break
15: else
16: GH ←construct hierarchical graph using Tactive
17: Piter ← find shortest path to goal in GH

18: GS ←update derivative graph using Piter,L
19: append Piter to P
20: reset Lactive by propagating current Lactive along Piter
21: reinitialize new Tactive using (3)
22: update xinit ← Piter(end)

23: if path found then
24: D ← find shortest path in derivative graph GS
25: ξ ← compute polynomial trajectory using P,D, tfixed
26: return ξ
27: else
28: return ∅

Iter. i Iter. i+1

Fig. 4: Once a partial geometric path (shown in black) is found
for the ith iteration, the k-step trees corresponding to the available
libraries at the last vertex of the partial path (Left) are merged to
construct one k-step tree for the subsequent iteration. This biases
the geometric tree within a dynamically feasible cone (Right) to
ensure the existence of a continuous kinodynamic path.

The merge operation allows for the deferment of the
assignment of higher-order derivatives until after a safe geo-
metric path is found. Afterwards, the higher-order derivatives
are assigned to each vertex by finding the least cost path in
the derivative graph GD.

RTactive(i, j) =

{
1, if ∃ RTLk

(i, j) = 1 ∀Lk ∈ Lactive

0, otherwise

ATactive(i, j) =

{
1, if ∃ ATLk

(i, j) = 1 ∀Lk ∈ Lactive

∞, otherwise
(3)

Algorithm 2 Find a dynamically feasible and safe polyno-
mial trajectory set Ξ for a robot team R given the initial and
final states I and F respectively.

1: procedure MULTIROBOTPLANNER(I , F)
2: for ∀ri ∈ R do
3: initialize empty path P i

4: initialize empty derivative graph Gi
S

5: set Li
active to Li

init and T i
active to T i

init
6: path found i ← False
7: while iter < max iter do
8: O ← assign priority as in III-E.1
9: for ∀i ∈ O do

10: Algorithm 1: lines 7-23
11: if ∀ path found i = True then
12: for ∀ri ∈ R do
13: Di ← find shortest path in derivative graph Gi

S
14: ξi ← compute trajectory using P i, Di, tfixed
15: Ξ← Append ξi

16: return Ξ
17: else
18: return ∅

E. Multi-Robot Planner

A prioritized, cooperative planning strategy (similar to
[25]) is used for the multi-robot case. In each iteration, a
priority ordering (discussed in III-E.1) O is computed for
the robot team and k-step paths are computed sequentially
for each robot in a manner similar to the single robot
planner described in Algorithm 1 (lines 6-24). The multi-
robot algorithm is summarized in Algorithm 2.

1) Priority Assignment: In order to compute O, the set
of robots R is partitioned into two disjoint subsets: Rs
(stationary) and Rns (non-stationary). If the active library set
Lri

active of robot ri contains the rest state—having zero higher-
order derivatives—ri is added to the Rs set. Otherwise, the
robot ri is added to the Rns set. All the robots in Rns are
assigned a higher priority than the robots in Rs. Within
Rns, robots are assigned priority based upon their lowest
achievable speed, where robots that are bounded to move
faster have higher priority due to lower maneuverability from
having fewer available edges. The robots in Rs are assigned
priority according to the length of the shortest geometric
path (ignoring robot interactions) from their position at the
beginning of an iteration to their respective goal positions,
with robots needing to cover longer distances having higher
priority. Searching the workspace graph GW using standard
graph search techniques [6] provides the shortest path for
each robot.

2) Hierarchical Graph Construction: We note one dif-
ference in the hierarchical graph construction step. For a
robot ri, the partial geometric paths of robots with a higher
priority are queried, and the edges in the first k time steps
from the hierarchical graph of robot ri that intersect with
these partial paths are removed. Since the offline reachability
analysis constrains the curvature of the resulting trajectories
to a rectangular convex hull of fixed width (constraint C2), the
edges in collision with higher priority paths can be pruned
using a line-polytope intersection algorithm (e.g., [7]).

P1

P3P2

Fig. 5: Representative experiments conducted in S1. The two figures
on the left show examples of the resulting polynomial trajectories
for 10 robots w/ non-stationary starts in a 10×10 m2 environment.
(Top Right) Inset showing the non-zero initial velocity profile.
(Bottom Right) Inset showing three robots (priorities P1 through
P3) navigating the environment and avoiding collision. Times of
arrival are shown for each robot at trajectory intersections.

IV. EVALUATION

A. Implementation Details and Experimental Design

The single and multi-robot planners were implemented in
Julia [1] and evaluated on a Lenovo Thinkpad with a Intel
4-Core 2.80GHz i7 CPU and 16 GB RAM.

The proposed method is qualitatively and quantitatively
evaluated by conducting two studies. For all evaluations,
a tree depth (Sect. III-C) of 3 was used. Study S1 ex-
perimentally shows that if the planner successfully finds a
solution (i.e., a set of geometric paths) for a multi-robot
planning problem (Sect. II), the resulting trajectories are
dynamically feasible and collision-free. Study S2 character-
izes the variation in the memory requirements, computational
complexity, and the solution quality of the proposed approach
for different cardinalities of the discrete set of higher-order
derivatives, S . Sect. IV-D discusses the completeness of the
single and multi-robot planning algorithms. In Sect. IV-E, we
compare our algorithm to the multi-robot variants of state-
of-the-art search [16] and sampling-based [23] algorithms.
Finally, in Fig. 8 qualitative results of the proposed approach
applied to online multi-robot replanning are shown in a
realistic three dimensional environment.

B. Dynamic Feasibility and Safety

For S1 (Fig. 6), 1000 multi-robot planning experiments are
conducted for each ni ∈ N = {1, 5, 6, 8, 10, 15, 20} robots
in two dimensional environments with different obstacle
densities and scales (minimum scale 10× 10 m2, maximum
scale 50 × 50 m2, lattice resolution 0.5 m). The results
verify that if the multi-robot planner successfully finds a set
of collision-free geometric paths for the multi-robot team,

(a) (b)

(c) (d)

(e)

Fig. 6: S1: Tests employ robots of radius 0.1 m, an acceleration limit
of 7 m/s2, and jerk limit of 65 m/s3. Sub-figures (a), (b), and (c)
show the distribution of inter-robot clearance distances, maximum
accelerations, and jerks, while sub-figure (d) shows the distribution
of initial speeds for all experiments in which geometric paths were
successfully found. Sub-figure (e) shows the variation in success
rates for ∀ni ∈ N against the environment scale. Results verify
the claim that if a set of geometric paths is found the resulting
trajectories are both feasible (R1) and safe (R2).

the resulting polynomial trajectories are dynamically feasible
and collision-free.

C. Computational Complexity

For S2 (Table I, Fig. 7), 200 multi-robot planning experi-
ments are conducted for different cardinalities of the discrete
set of higher-order derivatives (|S| = {81, 289, 1089, 1681})
for each ni ∈ N . Table I compares the percentage variation
in the solution cost (total jerk across all trajectories) and
the planning time baselined against |S| = 81 for 5 robots.
The baseline implementation of the proposed approach, as
described in Sect. III-E, leads to roughly a 200 % increase
in the planning time for |S| = {1089, 1681}, and is primarily
attributed to the large matrix operations in (3).

To reduce the computational cost, only a sub-sample of
the active states are chosen at each vertex along the partial
path (Algorithm 1, line 18). A kd-tree is constructed from the
active state velocities at each vertex and the n closest vertices
to the weighted expected velocity for the next two steps are
chosen. This sub-sampling leads to a significant reduction in
the planning time. For the experiments in S1 with |S| = 289,
a maximum of 10 libraries were selected, leading to a ∼ 90%
reduction in the planning time, while only increasing the
solution cost by approximately 7 %. There is a planning
time reduction between |S| = 81 and |S| = 289, as there
are more reachable states allowing for connections to more
vertices in the tree. Scaling further, however, increases the

TABLE I: Mean percentage variation (+:increase, -:decrease) in
the solution cost (S.C.) and the planning time (P.T) for different
cardinalities of S compared against |S| = 81 for 200 experiments
with 5 robots. We assume an acceleration controlled system with
vmax = 2.82 m/s to construct S.

Card(S) 289 1089 1681
Memory requirements for L and T 5.8MB 109MB 231.4MB
Offline computation time 70 s 1 hour 3 hours
Pct. change in P.T. (w/o sub-sampling) 90.53 211.5 214.9
Pct. change in P.T. (w/ sub-sampling) -1.83 14.66 12.88
Pct. change in S.C. (w/o sub-sampling) -23.19 -31.24 -31.39
Pct. change in S.C. (w/ sub-sampling) -20.06 -23.94 -23.69

(a) (b)

Fig. 7: S2: Sub-figures show characterization of computational
complexity and scaling of computation times (C.T.) for different
cardinalities of the discrete set S: (a) 289 and (b) 1681 with 10
sub-sampled states. The complexity of the proposed approach is
approximately O(N2) for up to 20 robots. The planning times
(< 1 s for up to 10 robots) suggest the viability of the proposed
approach for online replanning.

time as finer discretization results in similar states that are
chosen by the kd-tree. This leads to redundancy rather than
new information about available connections in the tree.
Fig. 7 shows the absolute computation times for |S| =
{81, 289, 1089, 1681} (w/ sub-sampled states) as well as the
scaling of algorithm complexity (approximately O(N2) for
N ≤ 20) for different team sizes. These results suggest the
viability of the proposed approach for online multi-robot
planning in known, cluttered, and static workspaces.

D. Algorithm Completeness

The single robot planner is resolution complete with
respect to the constraint set C and discretization of the
environment and the state space. This guarantee stems from
the completeness of Dijkstra’s algorithm [6] and the merge
operation 3—shown in Algorithm 1, line 21—where each
planning iteration captures the geometric k-step adjacencies
induced by all possible higher-order derivatives at a geomet-
ric vertex given the initial state of the robot. For the case of
multi-robot planning, this method is incomplete due to the
use of a prioritized strategy [3].

E. Comparison with Search and Sampling-Based Techniques

We compare our approach (approach A1) to two decou-
pled and prioritized multi-robot extensions: (A) a search-
based motion-planning approach using motion primitives1

[16] (approach A2) that discretizes the control input space
as opposed to the state space as in our approach and
(B) a sampling-based approach that uses the differential
fast marching tree algorithm [23] (approach A3). For this

1https://github.com/sikang/mpl_ros

TABLE II: Comparison results for success rate, computation times,
and solution cost. 100 experiments were conducted for team sizes
of 1, 5, and 10 in 10 randomly generated 10× 10 m2 workspaces.

N Success % Avg. Time (s) Avg. Cost
A1 A2 A3 A1 A2 A3 A1 A2 A3

1 100 91 95 0.006 0.021 0.046 18.4 6.27 11.6
5 98 81 85 0.102 0.522 0.244 88.9 30.3 57.1
10 82 77 71 0.349 1.10 0.702 189.3 60.4 116

comparison, 18 primitives were used per robot for approach
A2 and 1000 nodes were used per robot for approach A3.

As summarized in Table II, our approach achieves lower
computation times and higher success rates. However, the
resulting paths incur a higher cost (approximately 3 times the
cost of [16]). For this comparison, an acceleration controlled
system is assumed and the cumulative control effort for
the entire robot team is used as a measure of cost. The
high cost in the proposed approach is primarily attributed
to trajectories being constrained to the spatial lattice.

1
2

3
Fig. 8: Replanning with non-stationary initial states for 10 robots
in a 3D workspace. (Left) Two replanning instances for one robot
starting at the bottom left corner and planning to the goal indicated
by the number for the planning period (green to red to blue). (Right)
The final trajectories for 10 robots over two replanning instances.
Each robot is represented by a distinct color. The average replanning
time for 10 robots in the 3300 m3 warehouse environment with
11, 000 vertices and |S| = 1089 was approximately one second.

V. CONCLUSION AND FUTURE WORK

This paper presents a computationally efficient method for
motion-planning of multi-robot teams from non-stationary
initial states in known, static environments. Results show that
the proposed approach generates feasible and collision-free
trajectories for up to 10 robots from non-stationary states in
under one second, suggesting its viability for online planning
or replanning.

Since there exists a trade-off between the solution cost
and memory usage as the discretization for constructing the
set of higher-order derivatives increases, we intend to ex-
plore more efficient set construction techniques—identifying
representative states that express the reachability of similar
states—to better select or generate states. Another avenue
that we plan to explore is how the proposed approach can
be combined with search or sampling-based methods that
discretize the control input space [15], [16] for efficient
single robot local planning in partially known [10], [11] and
dynamic environments.

https://github.com/sikang/mpl_ros

REFERENCES

[1] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman.
Julia: A fast dynamic language for technical computing. arXiv preprint
arXiv:1209.5145, 2012.

[2] James Bruce and Manuela Veloso. Real-time multi-robot motion
planning with safe dynamics. In Multi-Robot Systems. From Swarms
to Intelligent Automata Volume III, pages 159–170. Springer, 2005.

[3] Michal Čáp, Peter Novák, Alexander Kleiner, and Martin Seleckỳ.
Prioritized planning algorithms for trajectory coordination of multiple
mobile robots. IEEE transactions on automation science and engi-
neering, 12(3):835–849, 2015.

[4] Ellen A Cappo, Arjav Desai, Matthew Collins, and Nathan Michael.
Online planning for human–multi-robot interactive theatrical perfor-
mance. Autonomous Robots, pages 1–16, 2018.

[5] Marcello Cirillo, Tansel Uras, and Sven Koenig. A lattice-based
approach to multi-robot motion planning for non-holonomic vehicles.
In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 232–239. IEEE, 2014.

[6] Edsger W Dijkstra. A note on two problems in connexion with graphs.
Numerische mathematik, 1(1):269–271, 1959.

[7] David P Dobkin and David G Kirkpatrick. Fast detection of polyhedral
intersection. Theoretical Computer Science, 27(3):241–253, 1983.

[8] Michael Erdmann and Tomas Lozano-Perez. On multiple moving
objects. Algorithmica, 2(1-4):477, 1987.

[9] Wolfgang Hönig, TK Satish Kumar, Liron Cohen, Hang Ma, Hong
Xu, Nora Ayanian, and Sven Koenig. Multi-agent path finding with
kinematic constraints. In ICAPS, pages 477–485, 2016.

[10] Lucas Janson, Tommy Hu, and Marco Pavone. Safe motion planning in
unknown environments: Optimality benchmarks and tractable policies.
arXiv preprint arXiv:1804.05804, 2018.

[11] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone.
Fast marching tree: A fast marching sampling-based method for
optimal motion planning in many dimensions. The International
journal of robotics research, 34(7):883–921, 2015.

[12] Sertac Karaman, Matthew R Walter, Alejandro Perez, Emilio Frazzoli,
and Seth Teller. Anytime motion planning using the rrt. Institute of
Electrical and Electronics Engineers, 2011.

[13] Steven M LaValle and Seth A Hutchinson. Optimal motion planning
for multiple robots having independent goals. In Robotics and
Automation, 1996. Proceedings., 1996 IEEE International Conference
on, volume 3, pages 2847–2852. IEEE, 1996.

[14] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic
planning. The international journal of robotics research, 20(5):378–
400, 2001.

[15] Duong Le and Erion Plaku. Multi-robot motion planning with
dynamics guided by multi-agent search. In IJCAI, pages 5314–5318,
2018.

[16] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar.
Search-based motion planning for quadrotors using linear quadratic
minimum time control. In Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on, pages 2872–2879. IEEE,
2017.

[17] Kai-Chieh Ma, Zhibei Ma, Lantao Liu, and Gaurav S Sukhatme.
Multi-robot informative and adaptive planning for persistent environ-
mental monitoring. In Distributed Autonomous Robotic Systems, pages
285–298. Springer, 2018.

[18] Daniel Mellinger, Alex Kushleyev, and Vijay Kumar. Mixed-integer
quadratic program trajectory generation for heterogeneous quadrotor
teams. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 477–483. IEEE, 2012.

[19] Mihail Pivtoraiko, Ross A Knepper, and Alonzo Kelly. Differentially
constrained mobile robot motion planning in state lattices. Journal of
Field Robotics, 26(3):308–333, 2009.

[20] James A Preiss, Wolfgang Hönig, Nora Ayanian, and Gaurav S
Sukhatme. Downwash-aware trajectory planning for large quadrotor
teams. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on, pages 250–257. IEEE, 2017.

[21] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory
planning for aggressive quadrotor flight in dense indoor environments.
In Robotics Research, pages 649–666. Springer, 2016.

[22] D Reed Robinson, Robert T Mar, Katia Estabridis, and Gary Hewer.
An efficient algorithm for optimal trajectory generation for hetero-
geneous multi-agent systems in non-convex environments. IEEE
Robotics and Automation Letters, 3(2):1215–1222, 2018.

[23] Edward Schmerling, Lucas Janson, and Marco Pavone. Optimal
sampling-based motion planning under differential constraints: the
drift case with linear affine dynamics. In Decision and Control (CDC),
2015 IEEE 54th Annual Conference on, pages 2574–2581. IEEE, 2015.

[24] Micha Sharir and Shmuel Sifrony. Coordinated motion planning
for two independent robots. Annals of Mathematics and Artificial
Intelligence, 3(1):107–130, 1991.

[25] David Silver. Cooperative pathfinding. AIIDE, 1:117–122, 2005.
[26] Kiril Solovey, Oren Salzman, and Dan Halperin. Finding a needle

in an exponential haystack: Discrete rrt for exploration of implicit
roadmaps in multi-robot motion planning. In Algorithmic Foundations
of Robotics XI, pages 591–607. Springer, 2015.

[27] Matthew Turpin, Kartik Mohta, Nathan Michael, and Vijay Kumar.
Goal assignment and trajectory planning for large teams of inter-
changeable robots. Autonomous Robots, 37(4):401–415, 2014.

[28] Glenn Wagner and Howie Choset. Subdimensional expansion for
multirobot path planning. Artificial Intelligence, 219:1–24, 2015.

[29] Douglas Brent West et al. Introduction to graph theory, volume 2.
Prentice hall Upper Saddle River, 2001.

[30] Jingjin Yu and Steven M LaValle. Optimal multirobot path planning
on graphs: Complete algorithms and effective heuristics. IEEE
Transactions on Robotics, 32(5):1163–1177, 2016.

	INTRODUCTION
	Problem Statement
	Approach
	Environment Representation
	Offline Reachability Analysis
	Offline k-Step Forward Reachability Tree Construction
	Single Robot Planner
	Multi-Robot Planner
	Priority Assignment
	Hierarchical Graph Construction

	Evaluation
	Implementation Details and Experimental Design
	Dynamic Feasibility and Safety
	Computational Complexity
	Algorithm Completeness
	Comparison with Search and Sampling-Based Techniques

	Conclusion and Future Work
	References

