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Abstract— This work considers estimation of mass param-
eters for multi-robot coordinated lifting in the context of
coordinated aerial manipulation, and develops strategies for
active parameter estimation for cooperative manipulation tasks
through an information-theoretic framework. The active sens-
ing problem is formulated based on application of increasing
forces to the object and detection of small motions that occur
when the center of pressure exits the convex hull formed by
existing contacts. In order to enable identification of informative
actions, we develop and employ a closed-form solution of
Cauchy-Schwarz quadratic mutual information (ICS) for non-
parametric filters. The evaluation considers iterative selection
from a finite set of measurements and demonstrates that
choosing measurements to maximize ICS significantly improves
the convergence rate of the parameter estimates compared
to random and cyclic selection methods. This approach is
extended to consider actuator constraints and feasible lifting
configurations and achieves an 80% success rate in formation
of feasible lifting configurations compared to a 53% baseline
performance.

I. INTRODUCTION

Aerial manipulation with micro-air vehicles enables trans-
portation and delivery of payloads with mass properties
that may exceed the capacity of individual systems while
benefiting from the maneuverability and accessibility of
small-scale aerial platforms. However, in scenarios such as
search and rescue where object mass properties are unknown
the team must concurrently estimate mass properties and
engage with the object toward enabling a cooperative object
lift.

This work addresses scenarios in which a multi-robot team
must lift an object with unknown mass and center of mass
(CoM) with hidden cavities or unknown composition such
as a piece of rubble. Existing work on aerial manipulation
typically assumes known mass properties and foreknowledge
of a configuration of robots capable of lifting the object [1,
2]. We relax these assumptions and propose an approach
that enables estimation of mass properties and formation of
feasible lifting configurations.

We propose an iterative approach for simultaneous pa-
rameter estimation and deployment of a multi-robot team
equipped with sufficient sensing to inspect an object in order
to extract contact constraints and viable attachment points
before beginning the estimation task. As large object motions
may lead to unsafe conditions, robots apply increasing force
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Fig. 1: The sequence of approach, attachment, estimation, and
liftoff. (1) Robots approach an object with unknown mass and
location of center of mass (CoM). (2) A robot attaches to the object
and applies a force in order to reduce uncertainty in the estimate
of the mass and CoM. (3) A second robot attaches and applies a
force that further reduces uncertainty. (4) A third robot attaches,
and two robots apply forces cooperatively. (5) The robots lift the
object after estimating the mass properties and forming a feasible
lifting configuration.

until detecting the initiation of object motion. The correspon-
dence between the applied wrench and initiation of motion is
used to infer the object mass and CoM via a non-parametric
Bayesian filter. This approach is applicable to a variety of
existing aerial manipulation systems such as those based on
rigid attachment [3], cable-suspension [4], robotic arms [5],
and the analogous multi-robot systems [1, 2, 6] and only
requires that robots be able to apply controlled wrenches
to the object. The proposed approach seeks to extend these
aerial manipulation systems via cooperative estimation and
construction of feasible lifting configurations.

Payload state [7] and parameter [3, 8, 9] estimation
techniques proposed in the context of aerial manipulation
assume already airborne vehicles and formulate traditional
or adaptive feedback controllers that seek to regulate the
payload state given the known or estimated object model and
feasibility assumptions. The approach described in this work
seeks to enable more broad application of these methods by
constructing configurations of robots capable of lifting target
objects and providing parameter estimates that facilitate ini-
tialization of these controllers, ensuring that any assumptions



are met.
In order to quickly achieve accurate estimates, we pur-

sue active selection of informative actions [10] generated
by physical interactions [11] with the object. Actions are
selected to maximize mutual information between measure-
ments and the target parameters and are used to update
a non-parametric Bayesian filter. Similar problem forms
are considered in the robotics literature in the context of
target localization by mobile robots [12, 13] often estimating
target location via particle filtering. We employ Cauchy-
Schwarz quadratic mutual information to select from finite
sets of actions and provide a closed-form expression for non-
parametric filters generalizing the formulation for ranging
sensors by Charrow et al. [14].

We approach the problem of parameter estimation and
formation of feasible lifting configurations through a series
of three scenarios that iteratively introduce components of
the full problem:
• Pure estimation: iterative selection from a set of wrench

measurements or attachment points seeking accurate
estimates per number of iterations [15].

• Estimation and deployment: robots iteratively attach to
the object and apply wrenches individually or collec-
tively given actuator limits that require cooperation to
estimate properties of heavy loads.

• Feasible lifting: robots simultaneously estimate mass
properties and form lifting configurations, as illustrated
in Fig. 1, to enable aerial manipulation via a sequence of
discovery, inspection, lifting, refinement, and execution
of intended manipulation.

Simulations of the estimation task demonstrate rapid conver-
gence of parameter estimates for the active sensing approach.
This is integrated into approaches for deployment, lifting,
and subsequently multi-robot aerial manipulation of un-
known objects, demonstrating significantly increased success
rates in formation of feasible lifting configurations compared
to default application of the best individual configuration.

II. APPROACH

This section presents the approach to lifting a payload,
estimation of mass properties, and active measurement se-
lection and begins with investigation of feasible lifting con-
figurations and their existence (Sect. II-A). Unknown mass
properties are estimated via a wrench-based measurement
model and Bayesian filtering (Sects. II-B–II-C). Sections II-
D–II-E detail action selection for reduction of uncertainty
in mass property estimates and formation of feasible lifting
configurations.

Consider a team of nr robots and an object with unknown
mass properties as illustrated in Fig. 2. Define the known
and finite set of attachment points A, occupied attachment
points R ⊆ A with number attached na = |R|, and set of
remaining attachment points Â = A \ R. The object has
CoM location qg , mass m, and resulting gravity wrench
wg = −mg

[
e3

T (qg × e3)T
]T

. The object is subject to

Fig. 2: A team of robots estimate the gravity wrench wg of an
object with CoM qg and contacts C. Robots select attachment points
a ∈ A at locations qa. A robot applies a wrench wa to the object
and infers the location of the CoM by detecting the initiation of
object motion.

a set of planar contacts C with normals in e3. The contact
locations are qc for all c ∈ C resulting in force-normalized
wrenches wc =

[
e3

T (qc × e3)T
]T

. This condition ensures
no friction forces when applying forces in e3 although
contacts may nominally be subject to friction. Given an
applied wrench w, the static equilibrium condition is

WCλC + wg + w = 0, λC ≥ 0 (1)

where λC is the vector of reaction forces and WC is the
contact wrench matrix with columns wc.

A. Feasible lifting configurations

In order to compute the feasibility of lifting the object
given a configuration of attached robots R, the feasibility
condition is

WRλR + wg = 0, 0 ≤ λR ≤ fmax (2)

with applied forces λR, normalized applied wrenches WR,
and robot actuator limit fmax. Equation (2) can be extended
to determine the existence of feasible configurations given
attached and remaining robots via a boolean vector b ∈
{0, 1}|Â| representing the attachment of additional robots and
a constraint based on the number of remaining robots to form
a mixed-integer linear program:

WRλR + WÂλÂ + wg = 0

0 ≤ λR ≤ fmax, 0 ≤ λÂ ≤ fmaxb∑
b∈b

b ≤ nr − na.
(3)

Sets of mass and CoM values for which feasible lifting
configurations exist by (3) are presented in Fig. 3 for na = 0
and na = nr attached robots in a lifting scenario that will
be detailed in later discussion. With no robots attached,
feasible configurations can be constructed for parameters
covering 79% of the support. When na = nr, (2) and (3)



(a) Initial feasibility (b) Four robots

Fig. 3: The set of mass and CoM values for which a feasible
configuration can be obtained for nr = 4 as computed by (3)
using the parameters of the feasible lifting scenario in Sect. III.
(a) shows the maximal feasible set given no robots attached with
a feasibility rate of 79.0% and (b) the feasible set for the best
complete deployment of the alloted four robots with a 37.7%
feasibility rate, found by exhaustive search.

are equivalent and lifting is feasible for only 37.7% of the
support.

B. Wrench-space measurements

Consider the ray in wrench-space w = w0 +wrλr where
λr ≥ 0. Substituting into (1), the critical force fc is

fc = arg max
λr

λr

s.t. WCλC + wg + w0 + wrλr = 0

λr ≥ 0, λC ≥ 0.

(4)

after which the object ceases to be statically stable (1) and
begins to move. The object is assumed to return to the orig-
inal resting condition after a sufficiently small disturbance,
and the robots are assumed to be able to detect sufficiently
small motions. Measurements of fc are then incorporated to
safely estimate the mass parameters.

Robots detect applied forces through either a calibrated
thrust model or other instrumentation. Measurements of
critical forces are modeled as Gaussian and are sensitive to
uncertainty in the timing and detection of motion and the
application and measurement of forces. For a measurement
Z of fc with realization z ∈ Z , the measurement distribution
is

p(Z = z|wg,WC) = N (z − f̂c, σ2)

f̂c =

{
fc fc < fmeas

fmeas fc ≥ fmeas

(5)

where N (x, σ2) is the zero-mean normal pdf with variance
σ2 evaluated at x. The measurement is saturated to obtain f̂c
based on the maximum applied force fmeas which will vary
from the actuator limit (fmax) for cooperative measurements.

We consider measurements with applied forces in the e3

direction. For a measurement taken by a single robot at
attachment point a ∈ A, the measurement is defined by
associated wrench wr = wa. For multiple robots, consider
cooperative measurements by subsets of robots contributing
in equal proportions. Let Cn(X) = {C|C ⊆ X, 0 < |C| ≤

n} be the set of non-empty subsets of some set, X of size
at most n. A cooperative measurement ZM for some M ∈
Cnr (R) has associated normalized wrench 1

|M|
∑
a∈Mwa

and maximum force fmeas = |M|fmax.

C. Representation of the belief

Given the measurement model, the mass parameters can
be estimated using Bayesian filtering. The filtering variable
θ = {qg1,qg2,m} is defined in terms of mass and the
horizontal location of the CoM (where qgi is the ith element
of qg) and has support Θ with θ ∈ Θ, covering the convex
hull of the contact points (for which the object is stable)
and a range of masses. Belief distributions arising in this
problem are often multi-modal or banana-shaped due to the
non-linearity of the measurements and motivate use of a
non-parametric filter [16]. A histogram filter is used with
discretization Θ̂ ⊂ Θ according to a regular grid and cell
volume δ with a uniform prior over mass and CoM.

D. Information-theoretic measurement evaluation

As is common in active sensing, we select informative
measurements to maximize the mutual information (MI) with
the target variable. We employ Cauchy-Schwarz quadratic
MI [14, 17] as it is readily computed in closed-form which
is derived from the Cauchy-Schwarz divergence

DCS(f, g) =

log

∫
f(x)2dx+ log

∫
g(x)2dx− 2 log

∫
f(x)g(x)dx.

(6)

Cauchy-Schwarz quadratic MI is the divergence between the
joint pX12

and the product of marginals pX1
pX2

:

ICS(X1;X2) = DCS(pX12
, pX1

pX2
). (7)

We now derive a closed-form solution for ICS for Gaus-
sian measurements of a discretized distribution, generalizing
the result by Charrow [18] for ranging sensors. Consider a
Gaussian measurement Z and a target random variable Θ
with discretization Θ̂ ⊂ Θ, cell volume δ, and probability
density pθ = p(Θ̂ = θ), obtained directly for a histogram
filter or by binning for a particle filter. Integrals over Θ of
a function φ : Θ→ R are approximated as∫

Θ

φ(θ)dθ ≈
∑
θ∈Θ̂

φ(θ)δ. (8)

For convenience, denote (5) as Nθ(z) = N (z − f̂θc , σ
2)

using f̂θc to indicate dependence of (4) on θ. Substituting
the joint, pθz = pθNθ(z) and product of marginals, pθpz =



pθ
∑
θ′∈Θ̂ pθ′Nθ′(z) into (7), ICS becomes

ICS(Θ;Z) ≈ log VJ + log VM − 2 log VC

VJ =
∑
θ∈Θ̂

∫
N 2
θ (z)p2

θdz

VM =
∑
θ∈Θ̂

∫
p2
θ

( ∑
θ′∈Θ̂

Nθ′(z)pθ′
)2

dz

VC =
∑
θ∈Θ̂

∫
Nθ(z)p2

θ

∑
θ′∈Θ̂

Nθ′(z)pθ′dz

(9)

where VJ , VM , and VC are the joint, marginal and cross-
potentials, using conventions by Prı́ncipe [17] and omitting
δ which cancels. The resulting closed-form solution is

VJ =
∑
θ∈Θ̂

Nθθp2
θ VM =

∑
θ∈Θ̂

p2
θ

∑
θ∈Θ̂

∑
θ′∈Θ̂

Nθθ′pθpθ′

VC =
∑
θ∈Θ̂

∑
θ′∈Θ̂

Nθθ′p2
θpθ′

(10)

where Nθθ′ is the integral of the product of Gaussians

Nθθ′ =

∫
Nθ(z)Nθ′(z)dz = N (f̂θc − f̂θ

′

c , 2σ
2). (11)

This result is similar to those of Torkkola [19] and Prı́ncipe
[17]. Efficient approximation may be achieved using methods
similar to those described by Seth and Prı́ncipe [20].

E. Iterative estimation and deployment

Simultaneous deployment of the multi-robot team and es-
timation of mass properties is achieved by using informative
measurements to characterize feasible lifting configurations
via the previously described methods.

For problems consisting of only estimation, the mass
properties can be estimated using greedy maximization of
ICS . Given choice of a measurement, Za, at any attachment
point a ∈ A, a measurement is taken at

arg max
a∈A

ICS(Za; Θ) (12)

and is computed by evaluating ICS at each attachment point.
We now employ cooperative measurements and extend

(12) through heuristics to develop Alg. 1, an iterative al-
gorithm for parameter estimation and formation of lifting
configurations. The choice of whether to attach an additional
robot is made based on the immediate increase in MI
for measurements incorporating that robot. A new robot is
attached only if doing so provides an increase in information
gain greater than a factor of a parameter α ≥ 1 to encourage
exploitation of already attached robots. We further introduce
a chance constraint on the set of attachment points based
on the probability that a feasible lifting configuration can
be achieved to encourage formation of such configurations.
Define the random variable LR ∈ {0, 1} where LR = 1
if and only if there exists a feasible solution to (3) given
R. Then EΘ(LR) is the probability given Θ that a feasible
lifting configuration can be formed by adding robots to R.
A new robot is only allowed to attach if this feasibility

Algorithm 1: Deployment cycle

1: A ← attachment points
2: R ← occupied attachment points,R ⊆ A
3: M← arg maxM∈Cnr (R) ICS(ZM; Θ)
4: a,M′ ← arg maxa∈Âf ,M′∈Cnr (R∪{a}) ICS(ZM′ ; Θ)

5: if |R| < nr and ICS(ZM′ ; Θ) > αICS(ZM; Θ) then
6: R ← R∪ {a} (Attach new robot)
7: Execute measurement ZM′

8: else
9: Execute measurement ZM

is reduced by no more than a factor of γ∆ where 0 <
γ < 1 and ∆ is the number of iterations since a robot
was last attached, inducing an exponential decay. The set
of remaining attachment points with acceptable feasibility is
Âf ⊆ Â defined as

Âf = {a|a ∈ Â,EΘ(LR∪{a}) ≥ γ∆EΘ(LR)}. (13)

III. RESULTS

The proposed approach is evaluated by first studying active
estimation in isolation using (12) in order to demonstrate
convergence rates. Further results consider deployment and
then formation of lifting configurations, introducing Alg. 1
incrementally. The results address the case of nr = 4 robots
which provides flexibility over the minimum of 3 required
for lifting. Although the approach extends to any number
of robots, the combinatorial nature of the set of cooperative
measurements makes this impractical. Achieving scalability
using numerical optimization of cooperative measurements
is left to future work.

The object to be manipulated is a cylinder with radius 1 m
with contacts approximated by 20 points on the boundary.
The histogram filter has discretization Θ̂ with a spatial
resolution of 0.1 m and mass resolution of 0.2 kg ranging
from 0.6 kg to 1.4 kg. The CoM and mass are sampled
uniformly from the support unless otherwise specified. There
are 10 attachment points, |A| = 10 distributed uniformly on
a concentric circle with radius 0.8 m. Measurements have
uncertainty σ = 1 N m which is injected into the system and
considered in Bayesian updates.

Parameter estimates are computed by a weighted average
over the belief distribution of the histogram filter. The
Euclidean norm of normalized parameter error is used with
each parameter scaled by the reciprocal of its range (2 m,
2 m, and 0.8 kg respectively) because of differing units and
for concise presentation. Due to the resolution of the filter,
a maximum accuracy of approximately 0.1 normalized units
is achieved on average.

Results comparing greedy (12) to uniform random and
deterministic cyclic action selection are shown in Fig. 4.
The cyclic approach selects measurements at uniform rates
and avoids taking nearby measurements by incrementing the
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Fig. 4: Pure estimation: (top) An example of greedy action selection
with actions (denoted as blue circles) scaled by ICS , and the
maximizer is darkened. Belief (denoted by purple circles) is shown
following execution of the chosen action with the true CoM and
mass denoted as a red star. (bottom) Normalized error for greedy,
random, and cyclic selection along with the standard error. The
greedy algorithm converges more than twice as quickly to resolution
limits as random selection and fifty-percent faster than cyclic
selection as indicated by dashed lines.

index of the attachment point by three after each iteration.
The test consists of 1000 trials with 20 iterations per trial and
does not consider actuator constraints. Included examples
show the evolution of the belief distribution and the subse-
quent variation of ICS . Although each approach converges,
greedy action selection converges more than twice as fast
as random selection and more than fifty-percent faster than
cyclic selection, reaching a mean accuracy of 0.1 after 7
iterations while random and cyclic selection require 15 and
11 iterations respectively to reach the same accuracy. Even
in this simple case, maximizing MI significantly outperforms
reasonable uninformed approaches. The remaining scenarios
address harder problems with larger spaces of actions and
measurements that may not be discriminative due to actuator
constraints.

Having demonstrated use of ICS as a cost function,
consider the problem of lifting and deployment. Actuator
constraints are now enforced with a limit of fmax = 4 N per
robot for an estimation and deployment task and fmax = 6 N
for feasible lifting. Given the maximum object weight of
fg = 13.7 N, measurements frequently reach actuator limits
in the estimation task with a mean rate of 1.45 times per trial
and maximum of 13 times over all trials, during the lifting
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Fig. 5: Normalized error for the estimation and deployment task
with fmax = 4 N and various values of α. In this scenario, robots
iteratively attach to the object (following Fig. 3) and estimate its
mass properties according to Alg. 1. Groups of attached robots ex-
ecute cooperative measurements in order to estimate the properties
of objects with mass that may exceed the capabilities of individual
robots.

task, four robots are generally necessary before being able
to lift the object.

For estimation and deployment, Fig. 5 shows results for
various values of α over 20 trials per each value. In this test,
Alg. 1 is modified slightly, discarding the chance constraint
and choosing robots from Â as the goal is estimation rather
than lifting. Although not all differences are significant, α =
5 achieves a balance between initial convergence and final
error. In general, estimates now converge more slowly than
for pure estimation due to the additional constraints.

Figure 6 shows results of 40 trials of the full feasible
lifting task using α = 5 and γ = 0.9. Parameters, θ,
are now sampled from the subset having feasible lifting
configurations shown in Fig. 3a (to emphasize discovery of
feasible configurations). Final error remains comparable to
previous experiments with a mean of 0.11 normalized units.
To form a baseline for performance in formation of feasible
lifting configurations, we compare to the best individual
configuration over the space of parameters (shown in Fig. 3b)
which has an expected success rate of 47.6% given that
a feasible configuration exists. The approach achieves a
feasible lifting configuration in the sense of (2) in 80%
of trials which is a significant improvement compared to
53.5% for the baseline configuration. In all except three trials
all four robots attach, and in each of these cases the three
attached robots achieve a feasible lifting configuration.

IV. CONCLUSION AND FUTURE WORK

This work proposes an approach to enable teams of
aerial robots to lift unknown objects using Bayesian filtering
to estimate object parameters and active sensing to select
informative interactions coupled with a chance constrained
deployment strategy to form feasible lifting configurations.
Existing approaches to aerial manipulation require assump-
tions on robot configurations and object mass. The proposed
approach relaxes assumptions that mass properties are known
and proposes a novel approach to estimation that permits safe
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Fig. 6: Feasible lifting: (left) An example of one trial showing attachment points A (black circles), the measurement set M (red), and
remaining attached robots R \M (black) with the belief shown as in Fig. 4. (center-top) Normalized error and standard error. (center-
bottom) Number of robots attached with mean behavior (black) and individual trials (gray). (right) Fraction of trials for which a feasible
configuration exists (blue) by (3), has been achieved (green) by (2), and success rate (red) of the baseline (Fig. 3b) each by iteration and
number of robots. Trials that did not reach a given number of robots are all successful and treated as feasible for addition of a fourth
robot.

estimation of the mass and CoM through wrenches applied
to the object. An information-theoretic objective is derived
to permit active selection of maximally informative mea-
surements. The results demonstrate both rapid convergence
in estimation and successful formation of feasible lifting
configurations in 80% of trials.

A number of simplifications are made in the scenarios
investigated in the results. The measurements are formulated
as a continuous set of rays in wrench-space, but the results
consider a finite subset of possible measurements. Numerical
optimization techniques are likely to provide benefits both
in computation and estimation. Greedy strategies are used
for planning to emphasize contributions in estimation and
active sensing. Better planning approaches can be developed.
A finite horizon planner would be especially beneficial
in formation of lifting configurations while the proposed
approach allows for evaluation of ICS over sets of measure-
ments occurring in such planning approaches. Experimental
evaluation will enable further evaluation of the approach,
and implementation within the context of general aerial
manipulation is desirable.
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